On the Sums of Functions Satisfying the Condition (s1)
A function f:{\mathR} \to {\mathR} satisfies the condition (s_1) if for each real r > 0, for each x, and for each set U \ni x belonging to the density topology there is an open interval I such that C(f) \supset I \cap U \neq \emptyset and f(U\cap I) \subset (f(x)-r,f(x)+r). (C(f) denotes the set...
Gespeichert in:
Veröffentlicht in: | Real analysis exchange 2002, Vol.28 (1), p.41-54 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A function f:{\mathR} \to {\mathR} satisfies the condition (s_1) if for each real r > 0, for each x, and for each set U \ni x belonging to the density topology there is an open interval I such that C(f) \supset I \cap U \neq \emptyset and f(U\cap I) \subset (f(x)-r,f(x)+r). (C(f) denotes the set of all continuity points of f). In this article we investigate the sums of two Darboux functions satisfying the condition (s_1). |
---|---|
ISSN: | 0147-1937 1930-1219 |
DOI: | 10.14321/realanalexch.28.1.0041 |