On the Sums of Functions Satisfying the Condition (s1)

A function f:{\mathR} \to {\mathR} satisfies the condition (s_1) if for each real r > 0, for each x, and for each set U \ni x belonging to the density topology there is an open interval I such that C(f) \supset I \cap U \neq \emptyset and f(U\cap I) \subset (f(x)-r,f(x)+r). (C(f) denotes the set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Real analysis exchange 2002, Vol.28 (1), p.41-54
1. Verfasser: Grande, Zbigniew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A function f:{\mathR} \to {\mathR} satisfies the condition (s_1) if for each real r > 0, for each x, and for each set U \ni x belonging to the density topology there is an open interval I such that C(f) \supset I \cap U \neq \emptyset and f(U\cap I) \subset (f(x)-r,f(x)+r). (C(f) denotes the set of all continuity points of f). In this article we investigate the sums of two Darboux functions satisfying the condition (s_1).
ISSN:0147-1937
1930-1219
DOI:10.14321/realanalexch.28.1.0041