On integrals with integrators in BV p

n 1936, L. C. Young proved that the Riemann-Stieltjes integral\int^b_a f dg exists, if f\in BV_p,\,g\in BV_q, \frac{1}{p}+\frac{1}{q}>1 and f,g do not have common discontinuous points. In this note, using Henstock's approach, we prove that \int^b_a f dg still exists without assuming the cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Real analysis exchange 2004, Vol.30 (no. 1), p.193-200
Hauptverfasser: Boonpogkrong, Varayu, Seng, Chew Tuan
Format: Artikel
Sprache:
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:n 1936, L. C. Young proved that the Riemann-Stieltjes integral\int^b_a f dg exists, if f\in BV_p,\,g\in BV_q, \frac{1}{p}+\frac{1}{q}>1 and f,g do not have common discontinuous points. In this note, using Henstock's approach, we prove that \int^b_a f dg still exists without assuming the condition on discontinuous points. Some convergence theorems are also proved.
ISSN:1930-1219