SECOND ORDER GEOMETRY OF SPACELIKE SURFACES IN DE SITTER 5-SPACE
The de Sitter space is known as a Lorentz space with positive constant curvature in the Minkowski space. A surface with a Riemannian metric is called a spacelike surface. In this work we investigate properties of the second order geometry of spacelike surfaces in de Sitter space $S_1^5$ by using the...
Gespeichert in:
Veröffentlicht in: | Publicacions matemàtiques 2015-01, Vol.59 (2), p.449-477 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The de Sitter space is known as a Lorentz space with positive constant curvature in the Minkowski space. A surface with a Riemannian metric is called a spacelike surface. In this work we investigate properties of the second order geometry of spacelike surfaces in de Sitter space $S_1^5$ by using the action of GL(2, ℝ) × SO(1, 2) on the system of conies defined by the second fundamental form. The main results are the classification of the second fundamental mapping and the description of the possible configurations of the LMN-ellipse. This ellipse gives information on the lightlike binormal directions and consequently about their associated asymptotic directions. |
---|---|
ISSN: | 0214-1493 2014-4350 |
DOI: | 10.5565/PUBLMAT_59215_07 |