Uniqueness theorems for Cauchy integrals
If $\mu$ is a finite complex measure in the complex plane $\mathbb{C}$ we denote by $C^\mu$ its Cauchy integral defined in the sense of principal value. The measure $\mu$ is called \emph{reflectionless} if it is continuous (has no atoms) and $C^\mu=0$ at $\mu$-almost every point. We show that if $\m...
Gespeichert in:
Veröffentlicht in: | Publicacions matemàtiques 2008-01, Vol.52 (2), p.289-314 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 314 |
---|---|
container_issue | 2 |
container_start_page | 289 |
container_title | Publicacions matemàtiques |
container_volume | 52 |
creator | Melnikov, M Poltoratski, A Volberg, A |
description | If $\mu$ is a finite complex measure in the complex plane $\mathbb{C}$ we denote by $C^\mu$ its Cauchy integral defined in the sense of principal value. The measure $\mu$ is called \emph{reflectionless} if it is continuous (has no atoms) and $C^\mu=0$ at $\mu$-almost every point.
We show that if $\mu$ is reflectionless and its Cauchy maximal function $C^\mu_*$ is summable with respect to $|\mu|$ then $\mu$ is trivial. An example of a reflectionless measure whose maximal function belongs to the "weak" $L^1$ is also constructed, proving that the above result is sharp in its scale. We also give a partial geometric description of the set of reflectionless measures on the line and discuss connections of our results with the notion of sets of finite perimeter in the sense of De Giorgi. |
doi_str_mv | 10.5565/PUBLMAT_52208_03 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_pm_1217964235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43736893</jstor_id><sourcerecordid>43736893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-6ce73c0e885b57b9885370a9967a581a4fba824acf15a2da1bb2209ba4194c283</originalsourceid><addsrcrecordid>eNpdUDtPwzAYtBBIlMLOgpSRgYCfiT2hEvGSgmBoZuuL69BUbV1sZ-i_b_qgQkx3-u670-kQuib4XohMPHxVT-XHaKwFpVhqzE7QgGLCU84EPv3Dz9FFCDOMqZSYD9BttWx_Oru0ISRxap23i5A0zicFdGa6TtpltN8e5uESnTU92KsDDlH18jwu3tLy8_W9GJWp4RjHNDM2ZwZbKUUt8lr1yHIMSmU5CEmANzVIysE0RACdAKnrvrCqgRPFDZVsiB73uSvvZtZE25l5O9Er3y7Ar7WDVhdVebj-igtNKMlVxikTfQLeJxjvQvC2OZoJ1tut9P-tesvN3jIL0fnjP2c5y6Ta6neHyNAZ7cG4XZEdMRA1-NiaudWEsH5jtgHvH3a_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniqueness theorems for Cauchy integrals</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>Revistes Catalanes amb Accés Obert (RACO)</source><source>JSTOR Mathematics & Statistics</source><creator>Melnikov, M ; Poltoratski, A ; Volberg, A</creator><creatorcontrib>Melnikov, M ; Poltoratski, A ; Volberg, A</creatorcontrib><description>If $\mu$ is a finite complex measure in the complex plane $\mathbb{C}$ we denote by $C^\mu$ its Cauchy integral defined in the sense of principal value. The measure $\mu$ is called \emph{reflectionless} if it is continuous (has no atoms) and $C^\mu=0$ at $\mu$-almost every point.
We show that if $\mu$ is reflectionless and its Cauchy maximal function $C^\mu_*$ is summable with respect to $|\mu|$ then $\mu$ is trivial. An example of a reflectionless measure whose maximal function belongs to the "weak" $L^1$ is also constructed, proving that the above result is sharp in its scale. We also give a partial geometric description of the set of reflectionless measures on the line and discuss connections of our results with the notion of sets of finite perimeter in the sense of De Giorgi.</description><identifier>ISSN: 2014-4350</identifier><identifier>ISSN: 0214-1493</identifier><identifier>EISSN: 2014-4350</identifier><identifier>DOI: 10.5565/PUBLMAT_52208_03</identifier><language>eng</language><publisher>Publicacions Matemàtiques</publisher><subject>30E20 ; 31A15 ; 42B20 ; Cauchy integral ; Cauchy mean value theorem ; Infinity ; Lebesgue measures ; Mathematical functions ; Mathematical integrals ; Mathematical theorems ; Perceptron convergence procedure ; Radon ; reflectionless measure ; Uniqueness</subject><ispartof>Publicacions matemàtiques, 2008-01, Vol.52 (2), p.289-314</ispartof><rights>Copyright 2008 Universitat Autònoma de Barcelona, Departament de Matemàtiques</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-6ce73c0e885b57b9885370a9967a581a4fba824acf15a2da1bb2209ba4194c283</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43736893$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43736893$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,27026,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Melnikov, M</creatorcontrib><creatorcontrib>Poltoratski, A</creatorcontrib><creatorcontrib>Volberg, A</creatorcontrib><title>Uniqueness theorems for Cauchy integrals</title><title>Publicacions matemàtiques</title><description>If $\mu$ is a finite complex measure in the complex plane $\mathbb{C}$ we denote by $C^\mu$ its Cauchy integral defined in the sense of principal value. The measure $\mu$ is called \emph{reflectionless} if it is continuous (has no atoms) and $C^\mu=0$ at $\mu$-almost every point.
We show that if $\mu$ is reflectionless and its Cauchy maximal function $C^\mu_*$ is summable with respect to $|\mu|$ then $\mu$ is trivial. An example of a reflectionless measure whose maximal function belongs to the "weak" $L^1$ is also constructed, proving that the above result is sharp in its scale. We also give a partial geometric description of the set of reflectionless measures on the line and discuss connections of our results with the notion of sets of finite perimeter in the sense of De Giorgi.</description><subject>30E20</subject><subject>31A15</subject><subject>42B20</subject><subject>Cauchy integral</subject><subject>Cauchy mean value theorem</subject><subject>Infinity</subject><subject>Lebesgue measures</subject><subject>Mathematical functions</subject><subject>Mathematical integrals</subject><subject>Mathematical theorems</subject><subject>Perceptron convergence procedure</subject><subject>Radon</subject><subject>reflectionless measure</subject><subject>Uniqueness</subject><issn>2014-4350</issn><issn>0214-1493</issn><issn>2014-4350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>2VB</sourceid><recordid>eNpdUDtPwzAYtBBIlMLOgpSRgYCfiT2hEvGSgmBoZuuL69BUbV1sZ-i_b_qgQkx3-u670-kQuib4XohMPHxVT-XHaKwFpVhqzE7QgGLCU84EPv3Dz9FFCDOMqZSYD9BttWx_Oru0ISRxap23i5A0zicFdGa6TtpltN8e5uESnTU92KsDDlH18jwu3tLy8_W9GJWp4RjHNDM2ZwZbKUUt8lr1yHIMSmU5CEmANzVIysE0RACdAKnrvrCqgRPFDZVsiB73uSvvZtZE25l5O9Er3y7Ar7WDVhdVebj-igtNKMlVxikTfQLeJxjvQvC2OZoJ1tut9P-tesvN3jIL0fnjP2c5y6Ta6neHyNAZ7cG4XZEdMRA1-NiaudWEsH5jtgHvH3a_</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Melnikov, M</creator><creator>Poltoratski, A</creator><creator>Volberg, A</creator><general>Publicacions Matemàtiques</general><general>Universitat Autònoma de Barcelona</general><general>Universitat Autònoma de Barcelona, Departament de Matemàtiques</general><scope>2VB</scope><scope>AALZO</scope><scope>AFIUA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080101</creationdate><title>Uniqueness theorems for Cauchy integrals</title><author>Melnikov, M ; Poltoratski, A ; Volberg, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-6ce73c0e885b57b9885370a9967a581a4fba824acf15a2da1bb2209ba4194c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>30E20</topic><topic>31A15</topic><topic>42B20</topic><topic>Cauchy integral</topic><topic>Cauchy mean value theorem</topic><topic>Infinity</topic><topic>Lebesgue measures</topic><topic>Mathematical functions</topic><topic>Mathematical integrals</topic><topic>Mathematical theorems</topic><topic>Perceptron convergence procedure</topic><topic>Radon</topic><topic>reflectionless measure</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melnikov, M</creatorcontrib><creatorcontrib>Poltoratski, A</creatorcontrib><creatorcontrib>Volberg, A</creatorcontrib><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>Revistes Catalanes amb Accés Obert (RACO) (Full Text)</collection><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>CrossRef</collection><jtitle>Publicacions matemàtiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melnikov, M</au><au>Poltoratski, A</au><au>Volberg, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniqueness theorems for Cauchy integrals</atitle><jtitle>Publicacions matemàtiques</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>52</volume><issue>2</issue><spage>289</spage><epage>314</epage><pages>289-314</pages><issn>2014-4350</issn><issn>0214-1493</issn><eissn>2014-4350</eissn><abstract>If $\mu$ is a finite complex measure in the complex plane $\mathbb{C}$ we denote by $C^\mu$ its Cauchy integral defined in the sense of principal value. The measure $\mu$ is called \emph{reflectionless} if it is continuous (has no atoms) and $C^\mu=0$ at $\mu$-almost every point.
We show that if $\mu$ is reflectionless and its Cauchy maximal function $C^\mu_*$ is summable with respect to $|\mu|$ then $\mu$ is trivial. An example of a reflectionless measure whose maximal function belongs to the "weak" $L^1$ is also constructed, proving that the above result is sharp in its scale. We also give a partial geometric description of the set of reflectionless measures on the line and discuss connections of our results with the notion of sets of finite perimeter in the sense of De Giorgi.</abstract><pub>Publicacions Matemàtiques</pub><doi>10.5565/PUBLMAT_52208_03</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2014-4350 |
ispartof | Publicacions matemàtiques, 2008-01, Vol.52 (2), p.289-314 |
issn | 2014-4350 0214-1493 2014-4350 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_pm_1217964235 |
source | Jstor Complete Legacy; Alma/SFX Local Collection; Revistes Catalanes amb Accés Obert (RACO); JSTOR Mathematics & Statistics |
subjects | 30E20 31A15 42B20 Cauchy integral Cauchy mean value theorem Infinity Lebesgue measures Mathematical functions Mathematical integrals Mathematical theorems Perceptron convergence procedure Radon reflectionless measure Uniqueness |
title | Uniqueness theorems for Cauchy integrals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniqueness%20theorems%20for%20Cauchy%20integrals&rft.jtitle=Publicacions%20matem%C3%A0tiques&rft.au=Melnikov,%20M&rft.date=2008-01-01&rft.volume=52&rft.issue=2&rft.spage=289&rft.epage=314&rft.pages=289-314&rft.issn=2014-4350&rft.eissn=2014-4350&rft_id=info:doi/10.5565/PUBLMAT_52208_03&rft_dat=%3Cjstor_proje%3E43736893%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43736893&rfr_iscdi=true |