Uniqueness theorems for Cauchy integrals

If $\mu$ is a finite complex measure in the complex plane $\mathbb{C}$ we denote by $C^\mu$ its Cauchy integral defined in the sense of principal value. The measure $\mu$ is called \emph{reflectionless} if it is continuous (has no atoms) and $C^\mu=0$ at $\mu$-almost every point. We show that if $\m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publicacions matemàtiques 2008-01, Vol.52 (2), p.289-314
Hauptverfasser: Melnikov, M, Poltoratski, A, Volberg, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue 2
container_start_page 289
container_title Publicacions matemàtiques
container_volume 52
creator Melnikov, M
Poltoratski, A
Volberg, A
description If $\mu$ is a finite complex measure in the complex plane $\mathbb{C}$ we denote by $C^\mu$ its Cauchy integral defined in the sense of principal value. The measure $\mu$ is called \emph{reflectionless} if it is continuous (has no atoms) and $C^\mu=0$ at $\mu$-almost every point. We show that if $\mu$ is reflectionless and its Cauchy maximal function $C^\mu_*$ is summable with respect to $|\mu|$ then $\mu$ is trivial. An example of a reflectionless measure whose maximal function belongs to the "weak" $L^1$ is also constructed, proving that the above result is sharp in its scale. We also give a partial geometric description of the set of reflectionless measures on the line and discuss connections of our results with the notion of sets of finite perimeter in the sense of De Giorgi.
doi_str_mv 10.5565/PUBLMAT_52208_03
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_pm_1217964235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43736893</jstor_id><sourcerecordid>43736893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-6ce73c0e885b57b9885370a9967a581a4fba824acf15a2da1bb2209ba4194c283</originalsourceid><addsrcrecordid>eNpdUDtPwzAYtBBIlMLOgpSRgYCfiT2hEvGSgmBoZuuL69BUbV1sZ-i_b_qgQkx3-u670-kQuib4XohMPHxVT-XHaKwFpVhqzE7QgGLCU84EPv3Dz9FFCDOMqZSYD9BttWx_Oru0ISRxap23i5A0zicFdGa6TtpltN8e5uESnTU92KsDDlH18jwu3tLy8_W9GJWp4RjHNDM2ZwZbKUUt8lr1yHIMSmU5CEmANzVIysE0RACdAKnrvrCqgRPFDZVsiB73uSvvZtZE25l5O9Er3y7Ar7WDVhdVebj-igtNKMlVxikTfQLeJxjvQvC2OZoJ1tut9P-tesvN3jIL0fnjP2c5y6Ta6neHyNAZ7cG4XZEdMRA1-NiaudWEsH5jtgHvH3a_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniqueness theorems for Cauchy integrals</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>Revistes Catalanes amb Accés Obert (RACO)</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Melnikov, M ; Poltoratski, A ; Volberg, A</creator><creatorcontrib>Melnikov, M ; Poltoratski, A ; Volberg, A</creatorcontrib><description>If $\mu$ is a finite complex measure in the complex plane $\mathbb{C}$ we denote by $C^\mu$ its Cauchy integral defined in the sense of principal value. The measure $\mu$ is called \emph{reflectionless} if it is continuous (has no atoms) and $C^\mu=0$ at $\mu$-almost every point. We show that if $\mu$ is reflectionless and its Cauchy maximal function $C^\mu_*$ is summable with respect to $|\mu|$ then $\mu$ is trivial. An example of a reflectionless measure whose maximal function belongs to the "weak" $L^1$ is also constructed, proving that the above result is sharp in its scale. We also give a partial geometric description of the set of reflectionless measures on the line and discuss connections of our results with the notion of sets of finite perimeter in the sense of De Giorgi.</description><identifier>ISSN: 2014-4350</identifier><identifier>ISSN: 0214-1493</identifier><identifier>EISSN: 2014-4350</identifier><identifier>DOI: 10.5565/PUBLMAT_52208_03</identifier><language>eng</language><publisher>Publicacions Matemàtiques</publisher><subject>30E20 ; 31A15 ; 42B20 ; Cauchy integral ; Cauchy mean value theorem ; Infinity ; Lebesgue measures ; Mathematical functions ; Mathematical integrals ; Mathematical theorems ; Perceptron convergence procedure ; Radon ; reflectionless measure ; Uniqueness</subject><ispartof>Publicacions matemàtiques, 2008-01, Vol.52 (2), p.289-314</ispartof><rights>Copyright 2008 Universitat Autònoma de Barcelona, Departament de Matemàtiques</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-6ce73c0e885b57b9885370a9967a581a4fba824acf15a2da1bb2209ba4194c283</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43736893$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43736893$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,27026,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Melnikov, M</creatorcontrib><creatorcontrib>Poltoratski, A</creatorcontrib><creatorcontrib>Volberg, A</creatorcontrib><title>Uniqueness theorems for Cauchy integrals</title><title>Publicacions matemàtiques</title><description>If $\mu$ is a finite complex measure in the complex plane $\mathbb{C}$ we denote by $C^\mu$ its Cauchy integral defined in the sense of principal value. The measure $\mu$ is called \emph{reflectionless} if it is continuous (has no atoms) and $C^\mu=0$ at $\mu$-almost every point. We show that if $\mu$ is reflectionless and its Cauchy maximal function $C^\mu_*$ is summable with respect to $|\mu|$ then $\mu$ is trivial. An example of a reflectionless measure whose maximal function belongs to the "weak" $L^1$ is also constructed, proving that the above result is sharp in its scale. We also give a partial geometric description of the set of reflectionless measures on the line and discuss connections of our results with the notion of sets of finite perimeter in the sense of De Giorgi.</description><subject>30E20</subject><subject>31A15</subject><subject>42B20</subject><subject>Cauchy integral</subject><subject>Cauchy mean value theorem</subject><subject>Infinity</subject><subject>Lebesgue measures</subject><subject>Mathematical functions</subject><subject>Mathematical integrals</subject><subject>Mathematical theorems</subject><subject>Perceptron convergence procedure</subject><subject>Radon</subject><subject>reflectionless measure</subject><subject>Uniqueness</subject><issn>2014-4350</issn><issn>0214-1493</issn><issn>2014-4350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>2VB</sourceid><recordid>eNpdUDtPwzAYtBBIlMLOgpSRgYCfiT2hEvGSgmBoZuuL69BUbV1sZ-i_b_qgQkx3-u670-kQuib4XohMPHxVT-XHaKwFpVhqzE7QgGLCU84EPv3Dz9FFCDOMqZSYD9BttWx_Oru0ISRxap23i5A0zicFdGa6TtpltN8e5uESnTU92KsDDlH18jwu3tLy8_W9GJWp4RjHNDM2ZwZbKUUt8lr1yHIMSmU5CEmANzVIysE0RACdAKnrvrCqgRPFDZVsiB73uSvvZtZE25l5O9Er3y7Ar7WDVhdVebj-igtNKMlVxikTfQLeJxjvQvC2OZoJ1tut9P-tesvN3jIL0fnjP2c5y6Ta6neHyNAZ7cG4XZEdMRA1-NiaudWEsH5jtgHvH3a_</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Melnikov, M</creator><creator>Poltoratski, A</creator><creator>Volberg, A</creator><general>Publicacions Matemàtiques</general><general>Universitat Autònoma de Barcelona</general><general>Universitat Autònoma de Barcelona, Departament de Matemàtiques</general><scope>2VB</scope><scope>AALZO</scope><scope>AFIUA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080101</creationdate><title>Uniqueness theorems for Cauchy integrals</title><author>Melnikov, M ; Poltoratski, A ; Volberg, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-6ce73c0e885b57b9885370a9967a581a4fba824acf15a2da1bb2209ba4194c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>30E20</topic><topic>31A15</topic><topic>42B20</topic><topic>Cauchy integral</topic><topic>Cauchy mean value theorem</topic><topic>Infinity</topic><topic>Lebesgue measures</topic><topic>Mathematical functions</topic><topic>Mathematical integrals</topic><topic>Mathematical theorems</topic><topic>Perceptron convergence procedure</topic><topic>Radon</topic><topic>reflectionless measure</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melnikov, M</creatorcontrib><creatorcontrib>Poltoratski, A</creatorcontrib><creatorcontrib>Volberg, A</creatorcontrib><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>Revistes Catalanes amb Accés Obert (RACO) (Full Text)</collection><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>CrossRef</collection><jtitle>Publicacions matemàtiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melnikov, M</au><au>Poltoratski, A</au><au>Volberg, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniqueness theorems for Cauchy integrals</atitle><jtitle>Publicacions matemàtiques</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>52</volume><issue>2</issue><spage>289</spage><epage>314</epage><pages>289-314</pages><issn>2014-4350</issn><issn>0214-1493</issn><eissn>2014-4350</eissn><abstract>If $\mu$ is a finite complex measure in the complex plane $\mathbb{C}$ we denote by $C^\mu$ its Cauchy integral defined in the sense of principal value. The measure $\mu$ is called \emph{reflectionless} if it is continuous (has no atoms) and $C^\mu=0$ at $\mu$-almost every point. We show that if $\mu$ is reflectionless and its Cauchy maximal function $C^\mu_*$ is summable with respect to $|\mu|$ then $\mu$ is trivial. An example of a reflectionless measure whose maximal function belongs to the "weak" $L^1$ is also constructed, proving that the above result is sharp in its scale. We also give a partial geometric description of the set of reflectionless measures on the line and discuss connections of our results with the notion of sets of finite perimeter in the sense of De Giorgi.</abstract><pub>Publicacions Matemàtiques</pub><doi>10.5565/PUBLMAT_52208_03</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2014-4350
ispartof Publicacions matemàtiques, 2008-01, Vol.52 (2), p.289-314
issn 2014-4350
0214-1493
2014-4350
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_pm_1217964235
source Jstor Complete Legacy; Alma/SFX Local Collection; Revistes Catalanes amb Accés Obert (RACO); JSTOR Mathematics & Statistics
subjects 30E20
31A15
42B20
Cauchy integral
Cauchy mean value theorem
Infinity
Lebesgue measures
Mathematical functions
Mathematical integrals
Mathematical theorems
Perceptron convergence procedure
Radon
reflectionless measure
Uniqueness
title Uniqueness theorems for Cauchy integrals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniqueness%20theorems%20for%20Cauchy%20integrals&rft.jtitle=Publicacions%20matem%C3%A0tiques&rft.au=Melnikov,%20M&rft.date=2008-01-01&rft.volume=52&rft.issue=2&rft.spage=289&rft.epage=314&rft.pages=289-314&rft.issn=2014-4350&rft.eissn=2014-4350&rft_id=info:doi/10.5565/PUBLMAT_52208_03&rft_dat=%3Cjstor_proje%3E43736893%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43736893&rfr_iscdi=true