Uniqueness theorems for Cauchy integrals
If $\mu$ is a finite complex measure in the complex plane $\mathbb{C}$ we denote by $C^\mu$ its Cauchy integral defined in the sense of principal value. The measure $\mu$ is called \emph{reflectionless} if it is continuous (has no atoms) and $C^\mu=0$ at $\mu$-almost every point. We show that if $\m...
Gespeichert in:
Veröffentlicht in: | Publicacions matemàtiques 2008-01, Vol.52 (2), p.289-314 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If $\mu$ is a finite complex measure in the complex plane $\mathbb{C}$ we denote by $C^\mu$ its Cauchy integral defined in the sense of principal value. The measure $\mu$ is called \emph{reflectionless} if it is continuous (has no atoms) and $C^\mu=0$ at $\mu$-almost every point.
We show that if $\mu$ is reflectionless and its Cauchy maximal function $C^\mu_*$ is summable with respect to $|\mu|$ then $\mu$ is trivial. An example of a reflectionless measure whose maximal function belongs to the "weak" $L^1$ is also constructed, proving that the above result is sharp in its scale. We also give a partial geometric description of the set of reflectionless measures on the line and discuss connections of our results with the notion of sets of finite perimeter in the sense of De Giorgi. |
---|---|
ISSN: | 2014-4350 0214-1493 2014-4350 |
DOI: | 10.5565/PUBLMAT_52208_03 |