Finite order meromorphic solutions of linear difference equations

In this paper, we mainly investigate the growth and the value distribution of meromorphic solutions of the linear difference equation \begin{equation*} a_{n}(z)f(z+n)+…+a_{1}(z)f(z+1)+a_{0}(z)f(z)=b(z), \end{equation*} where a_{0}(z),a_{1}(z),\cdots,a_{n}(z),b(z) are entire functions such that a_{0}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Japan Academy. Series A. Mathematical sciences 2011-05, Vol.87 (5), p.73-76
Hauptverfasser: Li, Sheng, Gao, Zong-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 5
container_start_page 73
container_title Proceedings of the Japan Academy. Series A. Mathematical sciences
container_volume 87
creator Li, Sheng
Gao, Zong-Sheng
description In this paper, we mainly investigate the growth and the value distribution of meromorphic solutions of the linear difference equation \begin{equation*} a_{n}(z)f(z+n)+…+a_{1}(z)f(z+1)+a_{0}(z)f(z)=b(z), \end{equation*} where a_{0}(z),a_{1}(z),\cdots,a_{n}(z),b(z) are entire functions such that a_{0}(z)a_{n}(z)\not\equiv 0. For a finite order meromorphic solution f(z), some interesting results on the relation between \rho=\rho(f) and \lambda_{f}=\max\{\lambda(f),\lambda(1/f)\}, are proved. And examples are provided for our results.
doi_str_mv 10.3792/pjaa.87.73
format Article
fullrecord <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_pja_1303825550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3792_pjaa_87_73</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-a28c95c1b930cd757c65d550aaa71738d5b65537d18fbf1fb5389be1bc00cf983</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhT2ARCks_ALPSCl2jGt7o6ooIFViobN1sc_CURoHOx3496S0MJ3unt739I6QO84WQpn6YWgBFlotlLggMyb0sqq5ebwi16W0bNqZMjOy2sQ-jkhT9pjpHnPapzx8RkdL6g5jTH2hKdAu9giZ-hgCZuwdUvw6wK98Qy4DdAVvz3NOdpvnj_VrtX1_eVuvtpUTko0V1NoZ6XhjBHNeSeWW0kvJAEBxJbSXzVJKoTzXoQk8NFJo0yBvHGMuGC3m5OnEHXJq0Y14cF30dshxD_nbJoh2vduer39iC5aLqWstp6gJcX9CuJxKyRj-3ZzZ48-OBrBaWSXED-NMY8E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finite order meromorphic solutions of linear difference equations</title><source>Project Euclid Open Access Journals</source><source>Freely Accessible Japanese Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Li, Sheng ; Gao, Zong-Sheng</creator><creatorcontrib>Li, Sheng ; Gao, Zong-Sheng</creatorcontrib><description>In this paper, we mainly investigate the growth and the value distribution of meromorphic solutions of the linear difference equation \begin{equation*} a_{n}(z)f(z+n)+…+a_{1}(z)f(z+1)+a_{0}(z)f(z)=b(z), \end{equation*} where a_{0}(z),a_{1}(z),\cdots,a_{n}(z),b(z) are entire functions such that a_{0}(z)a_{n}(z)\not\equiv 0. For a finite order meromorphic solution f(z), some interesting results on the relation between \rho=\rho(f) and \lambda_{f}=\max\{\lambda(f),\lambda(1/f)\}, are proved. And examples are provided for our results.</description><identifier>ISSN: 0386-2194</identifier><identifier>DOI: 10.3792/pjaa.87.73</identifier><language>eng</language><publisher>The Japan Academy</publisher><subject>30D35 ; 39A13 ; 39A22 ; Difference equations ; finite order ; value distribution</subject><ispartof>Proceedings of the Japan Academy. Series A. Mathematical sciences, 2011-05, Vol.87 (5), p.73-76</ispartof><rights>Copyright 2011 The Japan Academy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-a28c95c1b930cd757c65d550aaa71738d5b65537d18fbf1fb5389be1bc00cf983</citedby><cites>FETCH-LOGICAL-c350t-a28c95c1b930cd757c65d550aaa71738d5b65537d18fbf1fb5389be1bc00cf983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,882,885,926,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Gao, Zong-Sheng</creatorcontrib><title>Finite order meromorphic solutions of linear difference equations</title><title>Proceedings of the Japan Academy. Series A. Mathematical sciences</title><description>In this paper, we mainly investigate the growth and the value distribution of meromorphic solutions of the linear difference equation \begin{equation*} a_{n}(z)f(z+n)+…+a_{1}(z)f(z+1)+a_{0}(z)f(z)=b(z), \end{equation*} where a_{0}(z),a_{1}(z),\cdots,a_{n}(z),b(z) are entire functions such that a_{0}(z)a_{n}(z)\not\equiv 0. For a finite order meromorphic solution f(z), some interesting results on the relation between \rho=\rho(f) and \lambda_{f}=\max\{\lambda(f),\lambda(1/f)\}, are proved. And examples are provided for our results.</description><subject>30D35</subject><subject>39A13</subject><subject>39A22</subject><subject>Difference equations</subject><subject>finite order</subject><subject>value distribution</subject><issn>0386-2194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQhT2ARCks_ALPSCl2jGt7o6ooIFViobN1sc_CURoHOx3496S0MJ3unt739I6QO84WQpn6YWgBFlotlLggMyb0sqq5ebwi16W0bNqZMjOy2sQ-jkhT9pjpHnPapzx8RkdL6g5jTH2hKdAu9giZ-hgCZuwdUvw6wK98Qy4DdAVvz3NOdpvnj_VrtX1_eVuvtpUTko0V1NoZ6XhjBHNeSeWW0kvJAEBxJbSXzVJKoTzXoQk8NFJo0yBvHGMuGC3m5OnEHXJq0Y14cF30dshxD_nbJoh2vduer39iC5aLqWstp6gJcX9CuJxKyRj-3ZzZ48-OBrBaWSXED-NMY8E</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Li, Sheng</creator><creator>Gao, Zong-Sheng</creator><general>The Japan Academy</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110501</creationdate><title>Finite order meromorphic solutions of linear difference equations</title><author>Li, Sheng ; Gao, Zong-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-a28c95c1b930cd757c65d550aaa71738d5b65537d18fbf1fb5389be1bc00cf983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>30D35</topic><topic>39A13</topic><topic>39A22</topic><topic>Difference equations</topic><topic>finite order</topic><topic>value distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Gao, Zong-Sheng</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Japan Academy. Series A. Mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Sheng</au><au>Gao, Zong-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite order meromorphic solutions of linear difference equations</atitle><jtitle>Proceedings of the Japan Academy. Series A. Mathematical sciences</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>87</volume><issue>5</issue><spage>73</spage><epage>76</epage><pages>73-76</pages><issn>0386-2194</issn><abstract>In this paper, we mainly investigate the growth and the value distribution of meromorphic solutions of the linear difference equation \begin{equation*} a_{n}(z)f(z+n)+…+a_{1}(z)f(z+1)+a_{0}(z)f(z)=b(z), \end{equation*} where a_{0}(z),a_{1}(z),\cdots,a_{n}(z),b(z) are entire functions such that a_{0}(z)a_{n}(z)\not\equiv 0. For a finite order meromorphic solution f(z), some interesting results on the relation between \rho=\rho(f) and \lambda_{f}=\max\{\lambda(f),\lambda(1/f)\}, are proved. And examples are provided for our results.</abstract><pub>The Japan Academy</pub><doi>10.3792/pjaa.87.73</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0386-2194
ispartof Proceedings of the Japan Academy. Series A. Mathematical sciences, 2011-05, Vol.87 (5), p.73-76
issn 0386-2194
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_pja_1303825550
source Project Euclid Open Access Journals; Freely Accessible Japanese Titles; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 30D35
39A13
39A22
Difference equations
finite order
value distribution
title Finite order meromorphic solutions of linear difference equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20order%20meromorphic%20solutions%20of%20linear%20difference%20equations&rft.jtitle=Proceedings%20of%20the%20Japan%20Academy.%20Series%20A.%20Mathematical%20sciences&rft.au=Li,%20Sheng&rft.date=2011-05-01&rft.volume=87&rft.issue=5&rft.spage=73&rft.epage=76&rft.pages=73-76&rft.issn=0386-2194&rft_id=info:doi/10.3792/pjaa.87.73&rft_dat=%3Ccrossref_proje%3E10_3792_pjaa_87_73%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true