Finite order meromorphic solutions of linear difference equations

In this paper, we mainly investigate the growth and the value distribution of meromorphic solutions of the linear difference equation \begin{equation*} a_{n}(z)f(z+n)+…+a_{1}(z)f(z+1)+a_{0}(z)f(z)=b(z), \end{equation*} where a_{0}(z),a_{1}(z),\cdots,a_{n}(z),b(z) are entire functions such that a_{0}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Japan Academy. Series A. Mathematical sciences 2011-05, Vol.87 (5), p.73-76
Hauptverfasser: Li, Sheng, Gao, Zong-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we mainly investigate the growth and the value distribution of meromorphic solutions of the linear difference equation \begin{equation*} a_{n}(z)f(z+n)+…+a_{1}(z)f(z+1)+a_{0}(z)f(z)=b(z), \end{equation*} where a_{0}(z),a_{1}(z),\cdots,a_{n}(z),b(z) are entire functions such that a_{0}(z)a_{n}(z)\not\equiv 0. For a finite order meromorphic solution f(z), some interesting results on the relation between \rho=\rho(f) and \lambda_{f}=\max\{\lambda(f),\lambda(1/f)\}, are proved. And examples are provided for our results.
ISSN:0386-2194
DOI:10.3792/pjaa.87.73