Finite order meromorphic solutions of linear difference equations
In this paper, we mainly investigate the growth and the value distribution of meromorphic solutions of the linear difference equation \begin{equation*} a_{n}(z)f(z+n)+…+a_{1}(z)f(z+1)+a_{0}(z)f(z)=b(z), \end{equation*} where a_{0}(z),a_{1}(z),\cdots,a_{n}(z),b(z) are entire functions such that a_{0}...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Japan Academy. Series A. Mathematical sciences 2011-05, Vol.87 (5), p.73-76 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we mainly investigate the growth and the value distribution of meromorphic solutions of the linear difference equation
\begin{equation*}
a_{n}(z)f(z+n)+…+a_{1}(z)f(z+1)+a_{0}(z)f(z)=b(z),
\end{equation*}
where a_{0}(z),a_{1}(z),\cdots,a_{n}(z),b(z) are entire functions such that a_{0}(z)a_{n}(z)\not\equiv 0. For a finite order meromorphic solution f(z), some interesting results on the relation between \rho=\rho(f) and \lambda_{f}=\max\{\lambda(f),\lambda(1/f)\}, are proved. And examples are provided for our results. |
---|---|
ISSN: | 0386-2194 |
DOI: | 10.3792/pjaa.87.73 |