On the cohomology of the mod p Steenrod algebra
Let p be an odd prime greater than seven and A the mod p Steenrod algebra. In this paper we prove that in the cohomology of A the product h_1 h_n \tilde \delta _{s + 4}\in {\rm Ext}_A^{s + 6, t(s,n) + s} ({\bf Z}_p , {\bf Z}_p) is nontrivial for n \geq 5, and trivial for n=3, 4, where \tilde \delta...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Japan Academy. Series A. Mathematical sciences 2009-11, Vol.85 (9), p.143-148 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let p be an odd prime greater than seven and A the mod p
Steenrod algebra. In this paper we prove that in the cohomology of A the
product h_1 h_n \tilde \delta _{s + 4}\in {\rm Ext}_A^{s + 6, t(s,n) + s} ({\bf
Z}_p , {\bf Z}_p) is nontrivial for n \geq 5, and trivial for n=3, 4, where
\tilde \delta _{s + 4} is actually \tilde \alpha _{s+4}^{(4)} described by
X. Wang and Q. Zheng, 0 \leq s < p - 4, t(s,n) = 2(p-1)[(s + 1) + (s + 3)p
+ (s + 3)p^2 + (s + 4)p^3 + p^n ]. We show our results by explicit
combinatorial analysis of the (modified) May spectral sequence. The method of
proof is very elementary. |
---|---|
ISSN: | 0386-2194 |
DOI: | 10.3792/pjaa.85.143 |