Trilinear forms and Chern classes of Calabi--Yau threefolds

Let X be a Calabi--Yau threefold and \mu the symmetric trilinear form on the second cohomology group H^{2}(X,\mathbb{Z}) defined by the cup product. We investigate the interplay between the Chern classes c_{2}(X), c_{3}(X) and the trilinear form \mu, and demonstrate some numerical relations between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Osaka journal of mathematics 2014, Vol.51 (no. 1), p.203-215
Hauptverfasser: Kanazawa, Atsushi, Wilson, P.M.H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue no. 1
container_start_page 203
container_title Osaka journal of mathematics
container_volume 51
creator Kanazawa, Atsushi
Wilson, P.M.H
description Let X be a Calabi--Yau threefold and \mu the symmetric trilinear form on the second cohomology group H^{2}(X,\mathbb{Z}) defined by the cup product. We investigate the interplay between the Chern classes c_{2}(X), c_{3}(X) and the trilinear form \mu, and demonstrate some numerical relations between them. When the cubic form \mu(x,x,x) has a linear factor over \mathbb{R}, some properties of the linear form and the residual quadratic form are also obtained.
format Article
fullrecord <record><control><sourceid>projecteuclid</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_ojm_1396966232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_CULeuclid_euclid_ojm_1396966232</sourcerecordid><originalsourceid>FETCH-LOGICAL-n256t-a09b62c6f686714031f936a6ce20ec90d4be480156e99d8538fe09008c6337713</originalsourceid><addsrcrecordid>eNotzD1qxDAQQGE3gSSb3EEXEIwteyyRJsHkDwxpdoutzFgesTKytUjeIrdPEVcfvOLdF485zwA1ti08FC_H5INfmZJwMS1Z0DqJ7sJpFTZQzpxFdKKjQKOX8kw3sV0Ss4thyk_FnaOQ-Xn3UJw-3o_dl-x_Pr-7t16uVYObJDAjVhYdamzLGlTpjEJCyxWwNTDVI9caygbZmEk3SjsGA6AtKtW2pToUr__fa4oz241vNvhpuCa_UPodIvmhO_V73YnzMpTKoEGsVKX-AGCuSmU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Trilinear forms and Chern classes of Calabi--Yau threefolds</title><source>Project Euclid_欧几里德项目期刊</source><source>Project Euclid_OA刊</source><source>Freely Accessible Japanese Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kanazawa, Atsushi ; Wilson, P.M.H</creator><creatorcontrib>Kanazawa, Atsushi ; Wilson, P.M.H</creatorcontrib><description>Let X be a Calabi--Yau threefold and \mu the symmetric trilinear form on the second cohomology group H^{2}(X,\mathbb{Z}) defined by the cup product. We investigate the interplay between the Chern classes c_{2}(X), c_{3}(X) and the trilinear form \mu, and demonstrate some numerical relations between them. When the cubic form \mu(x,x,x) has a linear factor over \mathbb{R}, some properties of the linear form and the residual quadratic form are also obtained.</description><language>eng</language><publisher>Osaka University and Osaka City University, Departments of Mathematics</publisher><subject>14F45 ; 14J32</subject><ispartof>Osaka journal of mathematics, 2014, Vol.51 (no. 1), p.203-215</ispartof><rights>Copyright 2014 Osaka University and Osaka City University, Departments of Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,878,881,921,4010</link.rule.ids></links><search><creatorcontrib>Kanazawa, Atsushi</creatorcontrib><creatorcontrib>Wilson, P.M.H</creatorcontrib><title>Trilinear forms and Chern classes of Calabi--Yau threefolds</title><title>Osaka journal of mathematics</title><description>Let X be a Calabi--Yau threefold and \mu the symmetric trilinear form on the second cohomology group H^{2}(X,\mathbb{Z}) defined by the cup product. We investigate the interplay between the Chern classes c_{2}(X), c_{3}(X) and the trilinear form \mu, and demonstrate some numerical relations between them. When the cubic form \mu(x,x,x) has a linear factor over \mathbb{R}, some properties of the linear form and the residual quadratic form are also obtained.</description><subject>14F45</subject><subject>14J32</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotzD1qxDAQQGE3gSSb3EEXEIwteyyRJsHkDwxpdoutzFgesTKytUjeIrdPEVcfvOLdF485zwA1ti08FC_H5INfmZJwMS1Z0DqJ7sJpFTZQzpxFdKKjQKOX8kw3sV0Ss4thyk_FnaOQ-Xn3UJw-3o_dl-x_Pr-7t16uVYObJDAjVhYdamzLGlTpjEJCyxWwNTDVI9caygbZmEk3SjsGA6AtKtW2pToUr__fa4oz241vNvhpuCa_UPodIvmhO_V73YnzMpTKoEGsVKX-AGCuSmU</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Kanazawa, Atsushi</creator><creator>Wilson, P.M.H</creator><general>Osaka University and Osaka City University, Departments of Mathematics</general><scope/></search><sort><creationdate>2014</creationdate><title>Trilinear forms and Chern classes of Calabi--Yau threefolds</title><author>Kanazawa, Atsushi ; Wilson, P.M.H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n256t-a09b62c6f686714031f936a6ce20ec90d4be480156e99d8538fe09008c6337713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>14F45</topic><topic>14J32</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanazawa, Atsushi</creatorcontrib><creatorcontrib>Wilson, P.M.H</creatorcontrib><jtitle>Osaka journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanazawa, Atsushi</au><au>Wilson, P.M.H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trilinear forms and Chern classes of Calabi--Yau threefolds</atitle><jtitle>Osaka journal of mathematics</jtitle><date>2014</date><risdate>2014</risdate><volume>51</volume><issue>no. 1</issue><spage>203</spage><epage>215</epage><pages>203-215</pages><abstract>Let X be a Calabi--Yau threefold and \mu the symmetric trilinear form on the second cohomology group H^{2}(X,\mathbb{Z}) defined by the cup product. We investigate the interplay between the Chern classes c_{2}(X), c_{3}(X) and the trilinear form \mu, and demonstrate some numerical relations between them. When the cubic form \mu(x,x,x) has a linear factor over \mathbb{R}, some properties of the linear form and the residual quadratic form are also obtained.</abstract><pub>Osaka University and Osaka City University, Departments of Mathematics</pub><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier
ispartof Osaka journal of mathematics, 2014, Vol.51 (no. 1), p.203-215
issn
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_ojm_1396966232
source Project Euclid_欧几里德项目期刊; Project Euclid_OA刊; Freely Accessible Japanese Titles; EZB-FREE-00999 freely available EZB journals
subjects 14F45
14J32
title Trilinear forms and Chern classes of Calabi--Yau threefolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-projecteuclid&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trilinear%20forms%20and%20Chern%20classes%20of%20Calabi--Yau%20threefolds&rft.jtitle=Osaka%20journal%20of%20mathematics&rft.au=Kanazawa,%20Atsushi&rft.date=2014&rft.volume=51&rft.issue=no.%201&rft.spage=203&rft.epage=215&rft.pages=203-215&rft_id=info:doi/&rft_dat=%3Cprojecteuclid%3Eoai_CULeuclid_euclid_ojm_1396966232%3C/projecteuclid%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true