Trilinear forms and Chern classes of Calabi--Yau threefolds
Let X be a Calabi--Yau threefold and \mu the symmetric trilinear form on the second cohomology group H^{2}(X,\mathbb{Z}) defined by the cup product. We investigate the interplay between the Chern classes c_{2}(X), c_{3}(X) and the trilinear form \mu, and demonstrate some numerical relations between...
Gespeichert in:
Veröffentlicht in: | Osaka journal of mathematics 2014, Vol.51 (no. 1), p.203-215 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let X be a Calabi--Yau threefold and \mu the symmetric
trilinear form on the second cohomology group H^{2}(X,\mathbb{Z})
defined by the cup product. We investigate the interplay between
the Chern classes c_{2}(X), c_{3}(X) and the trilinear
form \mu, and demonstrate some numerical relations between
them. When the cubic form \mu(x,x,x) has a linear factor
over \mathbb{R}, some properties of the linear form and
the residual quadratic form are also obtained. |
---|