Trilinear forms and Chern classes of Calabi--Yau threefolds

Let X be a Calabi--Yau threefold and \mu the symmetric trilinear form on the second cohomology group H^{2}(X,\mathbb{Z}) defined by the cup product. We investigate the interplay between the Chern classes c_{2}(X), c_{3}(X) and the trilinear form \mu, and demonstrate some numerical relations between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Osaka journal of mathematics 2014, Vol.51 (no. 1), p.203-215
Hauptverfasser: Kanazawa, Atsushi, Wilson, P.M.H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a Calabi--Yau threefold and \mu the symmetric trilinear form on the second cohomology group H^{2}(X,\mathbb{Z}) defined by the cup product. We investigate the interplay between the Chern classes c_{2}(X), c_{3}(X) and the trilinear form \mu, and demonstrate some numerical relations between them. When the cubic form \mu(x,x,x) has a linear factor over \mathbb{R}, some properties of the linear form and the residual quadratic form are also obtained.