The magnetic flow on the manifold of oriented geodesics of a three dimensional space form
Let M be the three dimensional complete simply connected manifold of constant sectional curvature 0,1 or -1. Let \mathcal{L} be the manifold of all (unparametrized) complete oriented geodesics of M, endowed with its canonical pseudo-Riemannian metric of signature (2,2) and Kähler structure J. A smoo...
Gespeichert in:
Veröffentlicht in: | Osaka journal of mathematics 2013-09, Vol.50 (no. 3), p.749-763 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let M be the three dimensional complete simply connected
manifold of constant sectional curvature 0,1 or -1. Let
\mathcal{L} be the manifold of all (unparametrized) complete
oriented geodesics of M, endowed with its canonical pseudo-Riemannian
metric of signature (2,2) and Kähler structure J.
A smooth curve in \mathcal{L} determines a ruled surface
in M. We characterize the ruled surfaces of M associated
with the magnetic geodesics of \mathcal{L}, that is, those
curves \sigma in \mathcal{L} satisfying \nabla_{\dot{\sigma}}\dot{\sigma}=J\dot{\sigma}.
More precisely: a time-like (space-like) magnetic geodesic
determines the ruled surface in M given by the binormal
vector field along a helix with positive (negative) torsion.
Null magnetic geodesics describe cones, cylinders or, in the
hyperbolic case, also cones with vertices at infinity. This
provides a relationship between the geometries of \mathcal{L}
and M. |
---|