Wasserstein geometry of Gaussian measures
This paper concerns the Riemannian/Alexandrov geometry of Gaussian measures, from the view point of the L^{2}-Wasserstein geometry. The space of Gaussian measures is of finite dimension, which allows to write down the explicit Riemannian metric which in turn induces the L^{2}-Wasserstein distance. M...
Gespeichert in:
Veröffentlicht in: | Osaka journal of mathematics 2011-12, Vol.48 (no. 4), p.1005-1026 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper concerns the Riemannian/Alexandrov geometry of
Gaussian measures, from the view point of the L^{2}-Wasserstein
geometry. The space of Gaussian measures is of finite dimension,
which allows to write down the explicit Riemannian metric
which in turn induces the L^{2}-Wasserstein distance. Moreover,
its completion as a metric space provides a complete picture
of the singular behavior of the L^{2}-Wasserstein geometry.
In particular, the singular set is stratified according to
the dimension of the support of the Gaussian measures, providing
an explicit nontrivial example of Alexandrov space with extremal
sets. |
---|