Codazzi fields on surfaces immersed in Euclidean 4-space
Consider a Riemannian vector bundle of rank 1 defined by a normal vector field \nu on a surface M in \mathbb{R}^{4}. Let \mathrm{II}_{\nu} be the second fundamental form with respect to \nu which determines a configuration of lines of curvature. In this article, we obtain conditions on \nu to isomet...
Gespeichert in:
Veröffentlicht in: | Osaka journal of mathematics 2008-12, Vol.45 (no. 4), p.877-894 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider a Riemannian vector bundle of rank 1 defined by a
normal vector field \nu on a surface M in \mathbb{R}^{4}.
Let \mathrm{II}_{\nu} be the second fundamental form with
respect to \nu which determines a configuration of lines
of curvature. In this article, we obtain conditions on \nu
to isometrically immerse the surface M with \mathrm{II}_{\nu}
as a second fundamental form into \mathbb{R}^{3}. Geometric
restrictions on M are determined by these conditions. As
a consequence, we analyze the extension of Loewner's conjecture,
on the index of umbilic points of surfaces in \mathbb{R}^{3},
to special configurations on surfaces in \mathbb{R}^{4}. |
---|