On the generalized Teichmüller spaces and differential equations

It is well known that for the family F of Riemann surfaces {R(z)} defined by the equations y2 = x(x — l)(x — z), zεC — {0,1}, we have one independent abelian differential ω = y−1dx on each R(z) and if we consider z as a parameter on C — {0,1}, the integrals are solutions of the Gauss’s differential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 1976-01, Vol.64, p.97-115
1. Verfasser: Kuribayashi, Akikazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well known that for the family F of Riemann surfaces {R(z)} defined by the equations y2 = x(x — l)(x — z), zεC — {0,1}, we have one independent abelian differential ω = y−1dx on each R(z) and if we consider z as a parameter on C — {0,1}, the integrals are solutions of the Gauss’s differential equation
ISSN:0027-7630
2152-6842
DOI:10.1017/S0027763000017578