On the generalized Teichmüller spaces and differential equations
It is well known that for the family F of Riemann surfaces {R(z)} defined by the equations y2 = x(x — l)(x — z), zεC — {0,1}, we have one independent abelian differential ω = y−1dx on each R(z) and if we consider z as a parameter on C — {0,1}, the integrals are solutions of the Gauss’s differential...
Gespeichert in:
Veröffentlicht in: | Nagoya mathematical journal 1976-01, Vol.64, p.97-115 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well known that for the family F of Riemann surfaces {R(z)} defined by the equations y2
= x(x — l)(x — z), zεC — {0,1}, we have one independent abelian differential ω = y−1dx on each R(z) and if we consider z as a parameter on C — {0,1}, the integrals are solutions of the Gauss’s differential equation |
---|---|
ISSN: | 0027-7630 2152-6842 |
DOI: | 10.1017/S0027763000017578 |