Algebraic Barth-Lefschetz theorems
We shall work over a fixed algebraically closed field k of arbitrary characteristic. By an algebraic variety over k we shall mean a reduced algebraic scheme over k. Fix a positive integer n and e = (e0, el,…, en ) a system of n + 1 weights (i.e. n + 1 positive integers e0, el,…, en ). If k[T0, Tl ,…...
Gespeichert in:
Veröffentlicht in: | Nagoya mathematical journal 1996-06, Vol.142, p.17-38 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We shall work over a fixed algebraically closed field k of arbitrary characteristic. By an algebraic variety over k we shall mean a reduced algebraic scheme over k. Fix a positive integer n and e = (e0, el,…, en
) a system of n + 1 weights (i.e. n + 1 positive integers e0, el,…, en
). If k[T0, Tl
,…, Tn] is the polynomial k-algebra in n + 1 variables, graded by the conditions deg(T
i) = ei i = 0, 1,…, n, denote by Pn(e) = Proj(k[T0, T1,…, Tn]) the n-dimensional weighted projective space over k of weights e. We refer the reader to [3] for the basic properties of weighted projective spaces. |
---|---|
ISSN: | 0027-7630 2152-6842 |
DOI: | 10.1017/S0027763000005626 |