Algebraic Barth-Lefschetz theorems

We shall work over a fixed algebraically closed field k of arbitrary characteristic. By an algebraic variety over k we shall mean a reduced algebraic scheme over k. Fix a positive integer n and e = (e0, el,…, en ) a system of n + 1 weights (i.e. n + 1 positive integers e0, el,…, en ). If k[T0, Tl ,…...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 1996-06, Vol.142, p.17-38
1. Verfasser: Bădescu, Lucian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We shall work over a fixed algebraically closed field k of arbitrary characteristic. By an algebraic variety over k we shall mean a reduced algebraic scheme over k. Fix a positive integer n and e = (e0, el,…, en ) a system of n + 1 weights (i.e. n + 1 positive integers e0, el,…, en ). If k[T0, Tl ,…, Tn] is the polynomial k-algebra in n + 1 variables, graded by the conditions deg(T i) = ei i = 0, 1,…, n, denote by Pn(e) = Proj(k[T0, T1,…, Tn]) the n-dimensional weighted projective space over k of weights e. We refer the reader to [3] for the basic properties of weighted projective spaces.
ISSN:0027-7630
2152-6842
DOI:10.1017/S0027763000005626