Morse inequalities for covering manifolds

We study the existence of L2 holomorphic sections of invariant line bundles over Galois coverings. We show that the von Neumann dimension of the space of L2 holomorphic sections is bounded below under weak curvature conditions. We also give criteria for a compact complex space with isolated singular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 2001-09, Vol.163, p.145-165
Hauptverfasser: Todor, Radu, Chiose, Ionuţ, Marinescu, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the existence of L2 holomorphic sections of invariant line bundles over Galois coverings. We show that the von Neumann dimension of the space of L2 holomorphic sections is bounded below under weak curvature conditions. We also give criteria for a compact complex space with isolated singularities and some related strongly pseudoconcave manifolds to be Moishezon. As applications we prove the stability of the previous Moishezon pseudoconcave manifolds under perturbation of complex structures as well as weak Lefschetz theorems.
ISSN:0027-7630
2152-6842
DOI:10.1017/S0027763000007947