An Algebraic Approach to Subframe Logics. Modal Case

We prove that if a modal formula is refuted on a wK4-algebra (B,□), then it is refuted on a finite wK4-algebra which is isomorphic to a subalgebra of a relativization of (B,□). As an immediate consequence, we obtain that each subframe and cofinal subframe logic over wK4 has the finite model property...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Notre Dame journal of formal logic 2011-01, Vol.52 (2), p.187-202
Hauptverfasser: Bezhanishvili, Guram, Ghilardi, Silvio, Jibladze, Mamuka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that if a modal formula is refuted on a wK4-algebra (B,□), then it is refuted on a finite wK4-algebra which is isomorphic to a subalgebra of a relativization of (B,□). As an immediate consequence, we obtain that each subframe and cofinal subframe logic over wK4 has the finite model property. On the one hand, this provides a purely algebraic proof of the results of Fine and Zakharyaschev for K4. On the other hand, it extends the Fine-Zakharyaschev results to wK4.
ISSN:0029-4527
1939-0726
DOI:10.1215/00294527-1306190