A General Form of Relative Recursion

The purpose of this note is to observe a generalization of the concept "computable in..." to arbitrary partial combinatory algebras. For every partial combinatory algebra (pca) A and every partial endofunction on A, a pca A[f] is constructed such that in A[f], the function f is representab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Notre Dame journal of formal logic 2006, Vol.47 (3), p.311-318
1. Verfasser: van Oosten, Jaap
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this note is to observe a generalization of the concept "computable in..." to arbitrary partial combinatory algebras. For every partial combinatory algebra (pca) A and every partial endofunction on A, a pca A[f] is constructed such that in A[f], the function f is representable by an element; a universal property of the construction is formulated in terms of Longley's 2-category of pcas and decidable applicative morphisms. It is proved that there is always a geometric inclusion from the realizability topos on A[f] into the one on A and that there is a meaningful preorder on the partial endofunctions on A which generalizes Turing reducibility.
ISSN:0029-4527
1939-0726
DOI:10.1305/ndjfl/1163775438