Schatten class Toeplitz operators on the parabolic Bergman space II

Let 0 < α ≤ 1 and let \boldsymbol{b}_\alpha^{2} be a Hilbert space of all square integrable solutions of a parabolic equation (∂t + (−Δ)α)u = 0 on the upper half space. We study the Toeplitz operators on \boldsymbol{b}_\alpha^{2} , which we characterize to be of Schatten class whose exponent is s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kodai mathematical journal 2012, Vol.35 (1), p.52-77
Hauptverfasser: Nishio, Masaharu, Suzuki, Noriaki, Yamada, Masahiro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let 0 < α ≤ 1 and let \boldsymbol{b}_\alpha^{2} be a Hilbert space of all square integrable solutions of a parabolic equation (∂t + (−Δ)α)u = 0 on the upper half space. We study the Toeplitz operators on \boldsymbol{b}_\alpha^{2} , which we characterize to be of Schatten class whose exponent is smaller than 1. For the proof, we use an atomic decomposition theorem of parabolic Bergman functions. Generalizations to Schatten class operators for Orlicz type and Herz type are also discussed.
ISSN:0386-5991
DOI:10.2996/kmj/1333027254