Schatten class Toeplitz operators on the parabolic Bergman space II
Let 0 < α ≤ 1 and let \boldsymbol{b}_\alpha^{2} be a Hilbert space of all square integrable solutions of a parabolic equation (∂t + (−Δ)α)u = 0 on the upper half space. We study the Toeplitz operators on \boldsymbol{b}_\alpha^{2} , which we characterize to be of Schatten class whose exponent is s...
Gespeichert in:
Veröffentlicht in: | Kodai mathematical journal 2012, Vol.35 (1), p.52-77 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let 0 < α ≤ 1 and let \boldsymbol{b}_\alpha^{2} be a Hilbert space of all square integrable solutions of a parabolic equation (∂t + (−Δ)α)u = 0 on the upper half space. We study the Toeplitz operators on \boldsymbol{b}_\alpha^{2} , which we characterize to be of Schatten class whose exponent is smaller than 1. For the proof, we use an atomic decomposition theorem of parabolic Bergman functions. Generalizations to Schatten class operators for Orlicz type and Herz type are also discussed. |
---|---|
ISSN: | 0386-5991 |
DOI: | 10.2996/kmj/1333027254 |