Model theoretic connected components of finitely generated nilpotent groups
We prove that for a finitely generated infinite nilpotent group G with structure (G, . , . . . ), the connected component G*⁰ of a sufficiently saturated extension G* of G exists and equals $\bigcap\limits_{n \in \mathbb{N}} {\left\{ {{g^n}:g \in {G^*}} \right\}} $ We construct an expansion of ℤ by...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2013-03, Vol.78 (1), p.245-259 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that for a finitely generated infinite nilpotent group G with structure (G, . , . . . ), the connected component G*⁰ of a sufficiently saturated extension G* of G exists and equals $\bigcap\limits_{n \in \mathbb{N}} {\left\{ {{g^n}:g \in {G^*}} \right\}} $ We construct an expansion of ℤ by a predicate (ℤ, +, P) such that the type-connected component ${\mathbb{Z}^*}_\emptyset ^{00}$ is strictly smaller than Z*⁰. We generalize this to finitely generated virtually solvable groups. As a corollary of our construction we obtain an optimality result for the van der Waerden theorem for finite partitions of groups. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.2178/jsl.7801170 |