Number of variables is equivalent to space

We prove that the set of properties describable by a uniform sequence of first-order sentences using at most k + 1 distinct variables is exactly equal to the set of properties checkable by a Turing machine in DSPACE[nk] (where n is the size of the universe). This set is also equal to the set of prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2001-09, Vol.66 (3), p.1217-1230
Hauptverfasser: Immerman, Neil, Buss, Jonathan F., Barrington, David A. Mix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the set of properties describable by a uniform sequence of first-order sentences using at most k + 1 distinct variables is exactly equal to the set of properties checkable by a Turing machine in DSPACE[nk] (where n is the size of the universe). This set is also equal to the set of properties describable using an iterative definition for a finite set of relations of arity k. This is a refinement of the theorem PSPACE = VAR[O[1]] [8]. We suggest some directions for exploiting this result to derive trade-offs between the number of variables and the quantifier depth in descriptive complexity.
ISSN:0022-4812
1943-5886
DOI:10.2307/2695103