Hierarchies of monadic generalized quantifiers

A combinatorial criterium is given when a monadic quantifier is expressible by means of universe-independent monadic quantifiers of width n. It is proved that the corresponding hierarchy does not collapse. As an application, it is shown that the second resumption (or vectorization) of the Hartig qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2000-09, Vol.65 (3), p.1241-1263
1. Verfasser: Luosto, Kerkko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A combinatorial criterium is given when a monadic quantifier is expressible by means of universe-independent monadic quantifiers of width n. It is proved that the corresponding hierarchy does not collapse. As an application, it is shown that the second resumption (or vectorization) of the Hartig quantifier is not definable by monadic quantifiers. The techniques rely on Ramsey theory.
ISSN:0022-4812
1943-5886
DOI:10.2307/2586699