Generic saturation

Assuming that ORD is ω + ω-Erdös we show that if a class forcing amenable to L (an L-forcing) has a generic then it has one definable in a set-generic extension of L [ O # ]. In fact we may choose such a generic to be periodic in the sense that it preserve the indiscernibility of a final segment of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 1998-03, Vol.63 (1), p.158-162
1. Verfasser: Friedman, Sy D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue 1
container_start_page 158
container_title The Journal of symbolic logic
container_volume 63
creator Friedman, Sy D.
description Assuming that ORD is ω + ω-Erdös we show that if a class forcing amenable to L (an L-forcing) has a generic then it has one definable in a set-generic extension of L [ O # ]. In fact we may choose such a generic to be periodic in the sense that it preserve the indiscernibility of a final segment of a periodic subclass of the Silver indiscernibles, and therefore to be almost codable in the sense that it is definable from a real which is generic for an L -forcing (and which belongs to a set-generic extension of L [ 0 # ]). This result is best possible in the sense that for any countable ordinal α there is an L -forcing which has generics but none periodic of period ≤ α. However, we do not know if an assumption beyond ZFC+“ O # exists” is actually necessary for these results. Let P denote a class forcing definable over an amenable ground model 〈 L , A 〉 and assume that O # exists. D efinition . P is relevant if P has a generic definable in L [ 0 # ]. P is almost relevant if P has a generic definable in a set-generic extension of L [ 0 # ]. R emark . The reverse Easton product of Cohen forcings 2
doi_str_mv 10.2307/2586594
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183745464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2586594</jstor_id><sourcerecordid>2586594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-a85ab0d33aaf5ab31d39f473b6474af0ff66f064e69705909772637af7deff9e3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rCP4CQcFTdZLJV2_qoquyIILrNWTbBFrXrSYp6L830rJHTzMMD-8MQ8gxhUuGoK6Y0FKUfIdMaMmxEFrLXTIBYKzgmrJ9chBjCwDZ6Ak5mbuNC011Gm3qg01Ntzkke96uozsa65Qs7-9eZw_F4nn-OLtZFBWiSoXVwq6gRrTW5w5pjaXnCleSK249eC-lB8mdLFVeBqVSTKKyXtXO-9LhlFwPuZ-ha12VXF-tm9p8hubDhh_T2cbMlotxOpY2rg2lGhUXXPIccbaN-OpdTKbt-rDJVxsqkVPGUGBWF4OqQhdjcH67g4L5-5kZf5bl-SDbmLrwDysG1sTkvrfMhncjFSph5PzF3MITZW9aGMBfLrh19w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634122353</pqid></control><display><type>article</type><title>Generic saturation</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Friedman, Sy D.</creator><creatorcontrib>Friedman, Sy D.</creatorcontrib><description>Assuming that ORD is ω + ω-Erdös we show that if a class forcing amenable to L (an L-forcing) has a generic then it has one definable in a set-generic extension of L [ O # ]. In fact we may choose such a generic to be periodic in the sense that it preserve the indiscernibility of a final segment of a periodic subclass of the Silver indiscernibles, and therefore to be almost codable in the sense that it is definable from a real which is generic for an L -forcing (and which belongs to a set-generic extension of L [ 0 # ]). This result is best possible in the sense that for any countable ordinal α there is an L -forcing which has generics but none periodic of period ≤ α. However, we do not know if an assumption beyond ZFC+“ O # exists” is actually necessary for these results. Let P denote a class forcing definable over an amenable ground model 〈 L , A 〉 and assume that O # exists. D efinition . P is relevant if P has a generic definable in L [ 0 # ]. P is almost relevant if P has a generic definable in a set-generic extension of L [ 0 # ]. R emark . The reverse Easton product of Cohen forcings 2 &lt;κ , κ regular is relevant. So are the Easton product and the full product, provided κ is restricted to the successor cardinals. See Chapter 3, Section Two of Friedman [3]. Of course any set-forcing (in L ) is almost relevant. Definition. κ is α-Erdös if whenever C is CUB in κ and f : [C] &lt;ω → κ is regressive (i.e., f ( a ) &lt; min( a )) then f has a homogeneous set of ordertype α.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.2307/2586594</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Cofinality ; Indiscernibles ; Mathematical theorems ; Periodicity</subject><ispartof>The Journal of symbolic logic, 1998-03, Vol.63 (1), p.158-162</ispartof><rights>Copyright 1998 Association for Symbolic Logic Inc</rights><rights>Copyright 1998 Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c337t-a85ab0d33aaf5ab31d39f473b6474af0ff66f064e69705909772637af7deff9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2586594$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2586594$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,27848,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Friedman, Sy D.</creatorcontrib><title>Generic saturation</title><title>The Journal of symbolic logic</title><description>Assuming that ORD is ω + ω-Erdös we show that if a class forcing amenable to L (an L-forcing) has a generic then it has one definable in a set-generic extension of L [ O # ]. In fact we may choose such a generic to be periodic in the sense that it preserve the indiscernibility of a final segment of a periodic subclass of the Silver indiscernibles, and therefore to be almost codable in the sense that it is definable from a real which is generic for an L -forcing (and which belongs to a set-generic extension of L [ 0 # ]). This result is best possible in the sense that for any countable ordinal α there is an L -forcing which has generics but none periodic of period ≤ α. However, we do not know if an assumption beyond ZFC+“ O # exists” is actually necessary for these results. Let P denote a class forcing definable over an amenable ground model 〈 L , A 〉 and assume that O # exists. D efinition . P is relevant if P has a generic definable in L [ 0 # ]. P is almost relevant if P has a generic definable in a set-generic extension of L [ 0 # ]. R emark . The reverse Easton product of Cohen forcings 2 &lt;κ , κ regular is relevant. So are the Easton product and the full product, provided κ is restricted to the successor cardinals. See Chapter 3, Section Two of Friedman [3]. Of course any set-forcing (in L ) is almost relevant. Definition. κ is α-Erdös if whenever C is CUB in κ and f : [C] &lt;ω → κ is regressive (i.e., f ( a ) &lt; min( a )) then f has a homogeneous set of ordertype α.</description><subject>Cofinality</subject><subject>Indiscernibles</subject><subject>Mathematical theorems</subject><subject>Periodicity</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp90E1LxDAQBuAgCq6rCP4CQcFTdZLJV2_qoquyIILrNWTbBFrXrSYp6L830rJHTzMMD-8MQ8gxhUuGoK6Y0FKUfIdMaMmxEFrLXTIBYKzgmrJ9chBjCwDZ6Ak5mbuNC011Gm3qg01Ntzkke96uozsa65Qs7-9eZw_F4nn-OLtZFBWiSoXVwq6gRrTW5w5pjaXnCleSK249eC-lB8mdLFVeBqVSTKKyXtXO-9LhlFwPuZ-ha12VXF-tm9p8hubDhh_T2cbMlotxOpY2rg2lGhUXXPIccbaN-OpdTKbt-rDJVxsqkVPGUGBWF4OqQhdjcH67g4L5-5kZf5bl-SDbmLrwDysG1sTkvrfMhncjFSph5PzF3MITZW9aGMBfLrh19w</recordid><startdate>19980301</startdate><enddate>19980301</enddate><creator>Friedman, Sy D.</creator><general>Cambridge University Press</general><general>The Association for Symbolic Logic, Inc</general><general>Association for Symbolic Logic</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>EOLOZ</scope><scope>FKUCP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19980301</creationdate><title>Generic saturation</title><author>Friedman, Sy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-a85ab0d33aaf5ab31d39f473b6474af0ff66f064e69705909772637af7deff9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Cofinality</topic><topic>Indiscernibles</topic><topic>Mathematical theorems</topic><topic>Periodicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedman, Sy D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 01</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedman, Sy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generic saturation</atitle><jtitle>The Journal of symbolic logic</jtitle><date>1998-03-01</date><risdate>1998</risdate><volume>63</volume><issue>1</issue><spage>158</spage><epage>162</epage><pages>158-162</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>Assuming that ORD is ω + ω-Erdös we show that if a class forcing amenable to L (an L-forcing) has a generic then it has one definable in a set-generic extension of L [ O # ]. In fact we may choose such a generic to be periodic in the sense that it preserve the indiscernibility of a final segment of a periodic subclass of the Silver indiscernibles, and therefore to be almost codable in the sense that it is definable from a real which is generic for an L -forcing (and which belongs to a set-generic extension of L [ 0 # ]). This result is best possible in the sense that for any countable ordinal α there is an L -forcing which has generics but none periodic of period ≤ α. However, we do not know if an assumption beyond ZFC+“ O # exists” is actually necessary for these results. Let P denote a class forcing definable over an amenable ground model 〈 L , A 〉 and assume that O # exists. D efinition . P is relevant if P has a generic definable in L [ 0 # ]. P is almost relevant if P has a generic definable in a set-generic extension of L [ 0 # ]. R emark . The reverse Easton product of Cohen forcings 2 &lt;κ , κ regular is relevant. So are the Easton product and the full product, provided κ is restricted to the successor cardinals. See Chapter 3, Section Two of Friedman [3]. Of course any set-forcing (in L ) is almost relevant. Definition. κ is α-Erdös if whenever C is CUB in κ and f : [C] &lt;ω → κ is regressive (i.e., f ( a ) &lt; min( a )) then f has a homogeneous set of ordertype α.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.2307/2586594</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4812
ispartof The Journal of symbolic logic, 1998-03, Vol.63 (1), p.158-162
issn 0022-4812
1943-5886
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183745464
source Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics
subjects Cofinality
Indiscernibles
Mathematical theorems
Periodicity
title Generic saturation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generic%20saturation&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=Friedman,%20Sy%20D.&rft.date=1998-03-01&rft.volume=63&rft.issue=1&rft.spage=158&rft.epage=162&rft.pages=158-162&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.2307/2586594&rft_dat=%3Cjstor_proje%3E2586594%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1634122353&rft_id=info:pmid/&rft_jstor_id=2586594&rfr_iscdi=true