Consequences of arithmetic for set theory
In this paper, we consider certain cardinals in ZF (set theory without AC, the axiom of choice). In ZFC (set theory with AC), given any cardinals C and D, either C ≤ D or D ≤ C. However, in ZF this is no longer so. For a given infinite set A consider$\operatorname{seq}^{1 - 1}(A)$, the set of all se...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 1994-03, Vol.59 (1), p.30-40 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider certain cardinals in ZF (set theory without AC, the axiom of choice). In ZFC (set theory with AC), given any cardinals C and D, either C ≤ D or D ≤ C. However, in ZF this is no longer so. For a given infinite set A consider$\operatorname{seq}^{1 - 1}(A)$, the set of all sequences of A without repetition. We compare$|\operatorname{seq}^{1 - 1}(A)|$, the cardinality of this set, to |P(A)|, the cardinality of the power set of A. What is provable about these two cardinals in ZF? The main result of this paper is that$ZF \vdash \forall A(|\operatorname{seq}^{1 - 1}(A)| \neq|\mathscr{P}(\mathscr{A})|)$, and we show that this is the best possible result. Furthermore, it is provable in ZF that if B is an infinite set, then $|\operatorname{fin}(B)| |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.2307/2275247 |