An analytic completeness theorem for logics with probability quantifiers
We give a completeness theorem for a logic with probability quantifiers which is equivalent to the logics described in a recent survey paper of Keisler [K]. This result improves on the completeness theorems in [K] in that it works for languages with function symbols and produces a model whose univer...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 1987-09, Vol.52 (3), p.802-816 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a completeness theorem for a logic with probability quantifiers which is equivalent to the logics described in a recent survey paper of Keisler [K]. This result improves on the completeness theorems in [K] in that it works for languages with function symbols and produces a model whose universe is an analytic subset of the real line, and whose relations and functions are Borel relative to this universe. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.1017/S0022481200029789 |