An invariance notion in recursion theory
A set of godel numbers is invariant if it is closed under automorphisms of (ω, ·), where ω is the set of all godel numbers of partial recursive functions and · is application (i.e., n · m ≃ φn(m)). The invariant arithmetic sets are investigated, and the invariant recursively enumerable sets and part...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 1982-03, Vol.47 (1), p.48-66 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A set of godel numbers is invariant if it is closed under automorphisms of (ω, ·), where ω is the set of all godel numbers of partial recursive functions and · is application (i.e., n · m ≃ φn(m)). The invariant arithmetic sets are investigated, and the invariant recursively enumerable sets and partial recursive functions are partially characterized. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.2307/2273381 |