On splitting stationary subsets of large cardinals
Let κ denote a regular uncountable cardinal and NS the normal ideal of nonstationary subsets of κ. Our results concern the well-known open question whether NS fails to be κ+-saturated, i.e., are there κ+ stationary subsets of κ with pairwise intersections nonstationary? Our first observation is: The...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 1977-06, Vol.42 (2), p.203-214 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 214 |
---|---|
container_issue | 2 |
container_start_page | 203 |
container_title | The Journal of symbolic logic |
container_volume | 42 |
creator | Baumgartner, James E. Taylor, Alan D. Wagon, Stanley |
description | Let κ denote a regular uncountable cardinal and NS the normal ideal of nonstationary subsets of κ. Our results concern the well-known open question whether NS fails to be κ+-saturated, i.e., are there κ+ stationary subsets of κ with pairwise intersections nonstationary? Our first observation is: Theorem. NS is κ+-saturated iff for every normal ideal J on κ there is a stationary set $A \subseteq \kappa$ such that $J = NS \mid A = \{X \subseteq \kappa:X \cap A \in NS\}$. Turning our attention to large cardinals, we extend the usual (weak) Mahlo hierarchy to define "greatly Mahlo" cardinals and obtain the following: Theorem. If κ is greatly Mahlo then NS is not κ+-saturated. Theorem. If κ is ordinal Π11-indescribable (e.g., weakly compact), ethereal (e.g., subtle), or carries a κ-saturated ideal, then κ is greatly Mahlo. Moreover, there is a stationary set of greatly Mahlo cardinals below any ordinal Π11-indescribable cardinal. These methods apply to other normal ideals as well; e.g., the subtle ideal on an ineffable cardinal κ is not κ+-saturated. |
doi_str_mv | 10.2307/2272121 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183739946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2272121</jstor_id><sourcerecordid>2272121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-2d7bbb9c03af4380abac270ab1c1764b78f1ec45b340fb3cf5a759a4f8175933</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKf4FwoKXlXz1Sa5U6ZuQmEMp16GJEtHam1nkoL-eztadunVA4eH95zzAnCJ4C0mkN1hzDDC6AhMkKAkzTjPj8EEQoxTyhE-BWchVBDCTFA-AXjZJGFXuxhds01CVNG1jfK_Seh0sDEkbZnUym9tYpTfuEbV4RyclD3sxcgpWD8_rWeLtFjOX2YPRWoIIzHFG6a1FgYSVVLCodLKYNYDGcRyqhkvkTU004TCUhNTZoplQtGSo56ETMH9ELvzbWVNtJ2p3UbuvPvq75OtcnL2VozTEVWoJUK83y8EzfuIq0PEd2dDlFXb-f0PEmEBc5JnTPTWzWAZ34bgbXnYgaDcVyrHSnvzejCrEFv_j5YOmgvR_hw05T9lzgjLZD5fyRV8nH28L15lQf4Ax6KCZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290636579</pqid></control><display><type>article</type><title>On splitting stationary subsets of large cardinals</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><creator>Baumgartner, James E. ; Taylor, Alan D. ; Wagon, Stanley</creator><creatorcontrib>Baumgartner, James E. ; Taylor, Alan D. ; Wagon, Stanley</creatorcontrib><description>Let κ denote a regular uncountable cardinal and NS the normal ideal of nonstationary subsets of κ. Our results concern the well-known open question whether NS fails to be κ+-saturated, i.e., are there κ+ stationary subsets of κ with pairwise intersections nonstationary? Our first observation is: Theorem. NS is κ+-saturated iff for every normal ideal J on κ there is a stationary set $A \subseteq \kappa$ such that $J = NS \mid A = \{X \subseteq \kappa:X \cap A \in NS\}$. Turning our attention to large cardinals, we extend the usual (weak) Mahlo hierarchy to define "greatly Mahlo" cardinals and obtain the following: Theorem. If κ is greatly Mahlo then NS is not κ+-saturated. Theorem. If κ is ordinal Π11-indescribable (e.g., weakly compact), ethereal (e.g., subtle), or carries a κ-saturated ideal, then κ is greatly Mahlo. Moreover, there is a stationary set of greatly Mahlo cardinals below any ordinal Π11-indescribable cardinal. These methods apply to other normal ideals as well; e.g., the subtle ideal on an ineffable cardinal κ is not κ+-saturated.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.2307/2272121</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Large cardinal properties ; Logical theorems ; Mathematical logic ; Mathematical set theory ; Stationary sets ; Ultrapowers ; Wagons</subject><ispartof>The Journal of symbolic logic, 1977-06, Vol.42 (2), p.203-214</ispartof><rights>Copyright 1977 Association for Symbolic Logic, Inc.</rights><rights>Copyright 1977 Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-2d7bbb9c03af4380abac270ab1c1764b78f1ec45b340fb3cf5a759a4f8175933</citedby><cites>FETCH-LOGICAL-c373t-2d7bbb9c03af4380abac270ab1c1764b78f1ec45b340fb3cf5a759a4f8175933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2272121$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2272121$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,27846,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Baumgartner, James E.</creatorcontrib><creatorcontrib>Taylor, Alan D.</creatorcontrib><creatorcontrib>Wagon, Stanley</creatorcontrib><title>On splitting stationary subsets of large cardinals</title><title>The Journal of symbolic logic</title><description>Let κ denote a regular uncountable cardinal and NS the normal ideal of nonstationary subsets of κ. Our results concern the well-known open question whether NS fails to be κ+-saturated, i.e., are there κ+ stationary subsets of κ with pairwise intersections nonstationary? Our first observation is: Theorem. NS is κ+-saturated iff for every normal ideal J on κ there is a stationary set $A \subseteq \kappa$ such that $J = NS \mid A = \{X \subseteq \kappa:X \cap A \in NS\}$. Turning our attention to large cardinals, we extend the usual (weak) Mahlo hierarchy to define "greatly Mahlo" cardinals and obtain the following: Theorem. If κ is greatly Mahlo then NS is not κ+-saturated. Theorem. If κ is ordinal Π11-indescribable (e.g., weakly compact), ethereal (e.g., subtle), or carries a κ-saturated ideal, then κ is greatly Mahlo. Moreover, there is a stationary set of greatly Mahlo cardinals below any ordinal Π11-indescribable cardinal. These methods apply to other normal ideals as well; e.g., the subtle ideal on an ineffable cardinal κ is not κ+-saturated.</description><subject>Large cardinal properties</subject><subject>Logical theorems</subject><subject>Mathematical logic</subject><subject>Mathematical set theory</subject><subject>Stationary sets</subject><subject>Ultrapowers</subject><subject>Wagons</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp9kF1LwzAUhoMoOKf4FwoKXlXz1Sa5U6ZuQmEMp16GJEtHam1nkoL-eztadunVA4eH95zzAnCJ4C0mkN1hzDDC6AhMkKAkzTjPj8EEQoxTyhE-BWchVBDCTFA-AXjZJGFXuxhds01CVNG1jfK_Seh0sDEkbZnUym9tYpTfuEbV4RyclD3sxcgpWD8_rWeLtFjOX2YPRWoIIzHFG6a1FgYSVVLCodLKYNYDGcRyqhkvkTU004TCUhNTZoplQtGSo56ETMH9ELvzbWVNtJ2p3UbuvPvq75OtcnL2VozTEVWoJUK83y8EzfuIq0PEd2dDlFXb-f0PEmEBc5JnTPTWzWAZ34bgbXnYgaDcVyrHSnvzejCrEFv_j5YOmgvR_hw05T9lzgjLZD5fyRV8nH28L15lQf4Ax6KCZg</recordid><startdate>19770601</startdate><enddate>19770601</enddate><creator>Baumgartner, James E.</creator><creator>Taylor, Alan D.</creator><creator>Wagon, Stanley</creator><general>Cambridge University Press</general><general>Association for Symbolic Logic, Inc</general><general>Association for Symbolic Logic</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>EOLOZ</scope><scope>FKUCP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19770601</creationdate><title>On splitting stationary subsets of large cardinals</title><author>Baumgartner, James E. ; Taylor, Alan D. ; Wagon, Stanley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-2d7bbb9c03af4380abac270ab1c1764b78f1ec45b340fb3cf5a759a4f8175933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>Large cardinal properties</topic><topic>Logical theorems</topic><topic>Mathematical logic</topic><topic>Mathematical set theory</topic><topic>Stationary sets</topic><topic>Ultrapowers</topic><topic>Wagons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baumgartner, James E.</creatorcontrib><creatorcontrib>Taylor, Alan D.</creatorcontrib><creatorcontrib>Wagon, Stanley</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 01</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baumgartner, James E.</au><au>Taylor, Alan D.</au><au>Wagon, Stanley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On splitting stationary subsets of large cardinals</atitle><jtitle>The Journal of symbolic logic</jtitle><date>1977-06-01</date><risdate>1977</risdate><volume>42</volume><issue>2</issue><spage>203</spage><epage>214</epage><pages>203-214</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>Let κ denote a regular uncountable cardinal and NS the normal ideal of nonstationary subsets of κ. Our results concern the well-known open question whether NS fails to be κ+-saturated, i.e., are there κ+ stationary subsets of κ with pairwise intersections nonstationary? Our first observation is: Theorem. NS is κ+-saturated iff for every normal ideal J on κ there is a stationary set $A \subseteq \kappa$ such that $J = NS \mid A = \{X \subseteq \kappa:X \cap A \in NS\}$. Turning our attention to large cardinals, we extend the usual (weak) Mahlo hierarchy to define "greatly Mahlo" cardinals and obtain the following: Theorem. If κ is greatly Mahlo then NS is not κ+-saturated. Theorem. If κ is ordinal Π11-indescribable (e.g., weakly compact), ethereal (e.g., subtle), or carries a κ-saturated ideal, then κ is greatly Mahlo. Moreover, there is a stationary set of greatly Mahlo cardinals below any ordinal Π11-indescribable cardinal. These methods apply to other normal ideals as well; e.g., the subtle ideal on an ineffable cardinal κ is not κ+-saturated.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.2307/2272121</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4812 |
ispartof | The Journal of symbolic logic, 1977-06, Vol.42 (2), p.203-214 |
issn | 0022-4812 1943-5886 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183739946 |
source | Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics |
subjects | Large cardinal properties Logical theorems Mathematical logic Mathematical set theory Stationary sets Ultrapowers Wagons |
title | On splitting stationary subsets of large cardinals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20splitting%20stationary%20subsets%20of%20large%20cardinals&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=Baumgartner,%20James%20E.&rft.date=1977-06-01&rft.volume=42&rft.issue=2&rft.spage=203&rft.epage=214&rft.pages=203-214&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.2307/2272121&rft_dat=%3Cjstor_proje%3E2272121%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290636579&rft_id=info:pmid/&rft_jstor_id=2272121&rfr_iscdi=true |