On splitting stationary subsets of large cardinals

Let κ denote a regular uncountable cardinal and NS the normal ideal of nonstationary subsets of κ. Our results concern the well-known open question whether NS fails to be κ+-saturated, i.e., are there κ+ stationary subsets of κ with pairwise intersections nonstationary? Our first observation is: The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 1977-06, Vol.42 (2), p.203-214
Hauptverfasser: Baumgartner, James E., Taylor, Alan D., Wagon, Stanley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let κ denote a regular uncountable cardinal and NS the normal ideal of nonstationary subsets of κ. Our results concern the well-known open question whether NS fails to be κ+-saturated, i.e., are there κ+ stationary subsets of κ with pairwise intersections nonstationary? Our first observation is: Theorem. NS is κ+-saturated iff for every normal ideal J on κ there is a stationary set $A \subseteq \kappa$ such that $J = NS \mid A = \{X \subseteq \kappa:X \cap A \in NS\}$. Turning our attention to large cardinals, we extend the usual (weak) Mahlo hierarchy to define "greatly Mahlo" cardinals and obtain the following: Theorem. If κ is greatly Mahlo then NS is not κ+-saturated. Theorem. If κ is ordinal Π11-indescribable (e.g., weakly compact), ethereal (e.g., subtle), or carries a κ-saturated ideal, then κ is greatly Mahlo. Moreover, there is a stationary set of greatly Mahlo cardinals below any ordinal Π11-indescribable cardinal. These methods apply to other normal ideals as well; e.g., the subtle ideal on an ineffable cardinal κ is not κ+-saturated.
ISSN:0022-4812
1943-5886
DOI:10.2307/2272121