Cardinal-preserving extensions

A classic result of Baumgartner-Harrington-Kleinberg [1] implies that assuming CH a stationary subset of ω1has a CUB subset in a cardinal-perserving generic extension of V, via a forcing of cardinality ω1. Therefore, assuming that$\omega_2^L$is countable: {$X \in L \mid X \subseteq \omega_1^L$and X...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2003-12, Vol.68 (4), p.1163-1170
1. Verfasser: Friedman, Sy D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A classic result of Baumgartner-Harrington-Kleinberg [1] implies that assuming CH a stationary subset of ω1has a CUB subset in a cardinal-perserving generic extension of V, via a forcing of cardinality ω1. Therefore, assuming that$\omega_2^L$is countable: {$X \in L \mid X \subseteq \omega_1^L$and X has a CUB subset in a cardinal -preserving extension of L} is constructible, as it equals the set of constructible subsets of$\omega_1^L$which in L are stationary. Is there a similar such result for subsets of$\ omega_2^L$? Building on work of M. Stanley [9], we show that there is not. We shall also consider a number of related problems, examining the extent to which they are "solvable" in the above sense, as well as defining a notion of reduction between them.
ISSN:0022-4812
1943-5886
DOI:10.2178/jsl/1067620178