Disconnection and level-set percolation for the Gaussian free field
We study the level-set percolation of the Gaussian free field on \mathbb Z^d, d \ge 3. We consider a level \alpha such that the excursion-set of the Gaussian free field above \alpha percolates. We derive large deviation estimates on the probability that the excursion-set of the Gaussian free field b...
Gespeichert in:
Veröffentlicht in: | Journal of the Mathematical Society of Japan 2015, Vol.67 (4), p.1801-1843 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the level-set percolation of the Gaussian free field on \mathbb Z^d, d \ge 3. We consider a level \alpha such that the excursion-set of the Gaussian free field above \alpha percolates. We derive large deviation estimates on the probability that the excursion-set of the Gaussian free field below the level \alpha disconnects a box of large side-length from the boundary of a larger homothetic box. It remains an open question whether our asymptotic upper and lower bounds are matching. With the help of a recent work of Lupu [21], we are able to infer some asymptotic upper bounds for similar disconnection problems by random interlacements, or by simple random walk. |
---|---|
ISSN: | 0025-5645 1881-2333 |
DOI: | 10.2969/jmsj/06741801 |