Disconnection and level-set percolation for the Gaussian free field

We study the level-set percolation of the Gaussian free field on \mathbb Z^d, d \ge 3. We consider a level \alpha such that the excursion-set of the Gaussian free field above \alpha percolates. We derive large deviation estimates on the probability that the excursion-set of the Gaussian free field b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Mathematical Society of Japan 2015, Vol.67 (4), p.1801-1843
1. Verfasser: SZNITMAN, Alain-Sol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the level-set percolation of the Gaussian free field on \mathbb Z^d, d \ge 3. We consider a level \alpha such that the excursion-set of the Gaussian free field above \alpha percolates. We derive large deviation estimates on the probability that the excursion-set of the Gaussian free field below the level \alpha disconnects a box of large side-length from the boundary of a larger homothetic box. It remains an open question whether our asymptotic upper and lower bounds are matching. With the help of a recent work of Lupu [21], we are able to infer some asymptotic upper bounds for similar disconnection problems by random interlacements, or by simple random walk.
ISSN:0025-5645
1881-2333
DOI:10.2969/jmsj/06741801