Strichartz estimates for Schrödinger equations with variable coefficients and potentials at most linear at spatial infinity

In the present paper we consider Schrödinger equations with variable coefficients and potentials, where the principal part is a long-range perturbation of the flat Laplacian and potentials have at most linear growth at spatial infinity. We then prove local-in-time Strichartz estimates, outside a lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Mathematical Society of Japan 2013, Vol.65 (3), p.687-721
1. Verfasser: MIZUTANI, Haruya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper we consider Schrödinger equations with variable coefficients and potentials, where the principal part is a long-range perturbation of the flat Laplacian and potentials have at most linear growth at spatial infinity. We then prove local-in-time Strichartz estimates, outside a large compact set centered at origin, without loss of derivatives. Moreover we also prove global-in-space Strichartz estimates under the non-trapping condition on the Hamilton flow generated by the kinetic energy.
ISSN:0025-5645
1881-2333
DOI:10.2969/jmsj/06530687