Dispersive estimates and asymptotic expansions for Schrödinger equations in dimension one

We study the time decay of scattering solutions to one-dimensional Schrödinger equations and prove a weighted dispersive estimate with stronger time decay than the case of unweighted estimates for the non-resonant state. Furthermore asymptotic expansions in time of scattering solutions are given. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Mathematical Society of Japan 2011-01, Vol.63 (1), p.239-261
1. Verfasser: MIZUTANI, Haruya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the time decay of scattering solutions to one-dimensional Schrödinger equations and prove a weighted dispersive estimate with stronger time decay than the case of unweighted estimates for the non-resonant state. Furthermore asymptotic expansions in time of scattering solutions are given. The key of the proof is the study of the Fourier properties of the Jost functions. We improve the Fourier properties of the Jost functions obtained by D'Ancona and Fanelli [2].
ISSN:0025-5645
1881-2333
DOI:10.2969/jmsj/06310239