Galois points on quartic surfaces

Let S be a smooth hypersurface in the projective three space and consider a projection of S from P\in S to a plane H . This projection induces an extension of fields k(S)/k(H) . The point P is called a Galois point if the extension is Galois. We study structures of quartic surfaces focusing on Galoi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Mathematical Society of Japan 2001, Vol.53 (no. 3), p.731-743
1. Verfasser: YOSHIHARA, Hisao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let S be a smooth hypersurface in the projective three space and consider a projection of S from P\in S to a plane H . This projection induces an extension of fields k(S)/k(H) . The point P is called a Galois point if the extension is Galois. We study structures of quartic surfaces focusing on Galois points. We will show that the number of the Galois points is zero, one, two, four or eight and the existence of some rule of distribution of the Galois points.
ISSN:1881-2333
DOI:10.2969/jmsj/05330731