Combinatorial moves on ambient isotopic submanifolds in a manifold
In knot theory, it is well-known that two links in the Euclidean 3-space are ambient isotopic if and only if they are related by a finite number of combinatorial moves along 2-simplices. This fact is generalized for submanifolds in a manifold whose codimensions are positive.
Gespeichert in:
Veröffentlicht in: | Journal of the Mathematical Society of Japan 2001, Vol.53 (2), p.321-331 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In knot theory, it is well-known that two links in the Euclidean 3-space are ambient isotopic if and only if they are related by a finite number of combinatorial moves along 2-simplices. This fact is generalized for submanifolds in a manifold whose codimensions are positive. |
---|---|
ISSN: | 0025-5645 1881-2333 |
DOI: | 10.2969/jmsj/05320321 |