Compression theorems for surfaces and their applications

Let M be a complete glued surface whose sectional curvature is greater than or equal to k and \triangle pqr a geodesic triangle domain with vertices p, q, r in M . We prove a compression theorem that there exists a distance nonincreasing map from \triangle pqr onto the comparison triangle domain \wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Mathematical Society of Japan 2007-07, Vol.59 (3), p.825-835
1. Verfasser: INNAMI, Nobuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let M be a complete glued surface whose sectional curvature is greater than or equal to k and \triangle pqr a geodesic triangle domain with vertices p, q, r in M . We prove a compression theorem that there exists a distance nonincreasing map from \triangle pqr onto the comparison triangle domain \widetilde \triangle pqr in the two-dimensional space form with sectional curvature k . Using the theorem, we also have some compression theorems and an application to a circular billiard ball problem on a surface.
ISSN:0025-5645
1881-2333
DOI:10.2969/jmsj/05930825