Compression theorems for surfaces and their applications
Let M be a complete glued surface whose sectional curvature is greater than or equal to k and \triangle pqr a geodesic triangle domain with vertices p, q, r in M . We prove a compression theorem that there exists a distance nonincreasing map from \triangle pqr onto the comparison triangle domain \wi...
Gespeichert in:
Veröffentlicht in: | Journal of the Mathematical Society of Japan 2007-07, Vol.59 (3), p.825-835 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let M be a complete glued surface whose sectional curvature is greater than or equal to k and \triangle pqr a geodesic triangle domain with vertices p, q, r in M . We prove a compression theorem that there exists a distance nonincreasing map from
\triangle pqr onto the comparison triangle domain \widetilde \triangle pqr in the two-dimensional space form with sectional curvature k . Using the theorem, we also have some compression theorems and an application to a
circular billiard ball problem on a surface. |
---|---|
ISSN: | 0025-5645 1881-2333 |
DOI: | 10.2969/jmsj/05930825 |