Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data

We investigate the nonstationary Navier-Stokes equations for an exterior domain \Omega\subset \bm{R}^3 in a solution class L^s (0,T;L^q(\Omega)) of very low regularity in space and time, satisfying Serrin's condition \frac{2}{s} + \frac{3}{q} = 1 but not necessarily any differentiability proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Mathematical Society of Japan 2007-01, Vol.59 (1), p.127-150
Hauptverfasser: FARWIG, Reinhard, KOZONO, Hideo, SOHR, Hermann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the nonstationary Navier-Stokes equations for an exterior domain \Omega\subset \bm{R}^3 in a solution class L^s (0,T;L^q(\Omega)) of very low regularity in space and time, satisfying Serrin's condition \frac{2}{s} + \frac{3}{q} = 1 but not necessarily any differentiability property. The weakest possible boundary conditions, beyond the usual trace theorems, are given by u|_{\partial\Omega} = g \in L^s (0,T;W^{-1/q,q}(\partial\Omega)) , and will be made precise in this paper. Moreover, we suppose the weakest possible divergence condition k = \div u \in L^s(0,T;L^r(\Omega)) , where \frac{1}{3} + \frac{1}{q} = \frac{1}{r} .
ISSN:0025-5645
1881-2333
DOI:10.2969/jmsj/1180135504