Stickelberger ideals of conductor p and their application
Let p be an odd prime number and F a number field. Let K=F(\zeta_p) and \Delta=\mathrm{Gal}(K/F) . Let \mathscr{S}_{\Delta} be the Stickelberger ideal of the group ring \mathbf{Z}[\Delta] defined in the previous paper [8]. As a consequence of a p -integer version of a theorem of McCulloh [15], [16],...
Gespeichert in:
Veröffentlicht in: | Journal of the Mathematical Society of Japan 2006-07, Vol.58 (3), p.885-902 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let p be an odd prime number and F a number field. Let K=F(\zeta_p) and \Delta=\mathrm{Gal}(K/F) . Let \mathscr{S}_{\Delta} be the Stickelberger ideal of the group ring \mathbf{Z}[\Delta] defined in the previous paper [8]. As a consequence of a p -integer version of a theorem of McCulloh [15], [16], it follows that F has the Hilbert-Speiser type property for the rings of p -integers of elementary abelian extensions over F of exponent p if and only if the ideal \mathscr{S}_{\Delta} annihilates the p -ideal class group of K . In this paper, we study some properties of the ideal \mathscr{S}_{\Delta} ,and check whether or not a subfield of \mathbf{Q}(\zeta_p) satisfies the above property. |
---|---|
ISSN: | 0025-5645 1881-2333 |
DOI: | 10.2969/jmsj/1156342042 |