Homotopy classes of self-maps and induced homomorphisms of homotopy groups
For a based space X , we consider the group \mathscr{E}_{\# n}(X) of all self homotopy classes \alpha of X such that \alpha_{\#} = \mathrm{id}:\pi_i(X) \to \pi_i(X) , for all i\le n , where n \le \infty , and the group \mathscr{E}_{\Omega}(X) of all \alpha such that \Omega \alpha = \mathrm{id} . Ana...
Gespeichert in:
Veröffentlicht in: | Journal of the Mathematical Society of Japan 2006-04, Vol.58 (2), p.401-418 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 418 |
---|---|
container_issue | 2 |
container_start_page | 401 |
container_title | Journal of the Mathematical Society of Japan |
container_volume | 58 |
creator | ARKOWITZ, Martin STROM, Jeffrey ŌSHIMA, Hideaki |
description | For a based space X , we consider the group \mathscr{E}_{\# n}(X) of all self homotopy classes \alpha of X
such that \alpha_{\#} = \mathrm{id}:\pi_i(X) \to \pi_i(X) , for all i\le n , where n \le \infty ,
and the group \mathscr{E}_{\Omega}(X) of all \alpha such that \Omega \alpha = \mathrm{id} .
Analogously, we study the semigroups \mathscr{Z}_{\# n}(X) and \mathscr{Z}_{\varOmega}(X) defined by replacing ' \mathrm{id} ' by ' 0 ' above.
There is a chain of containments of the \mathscr{E} -groups and the \mathscr{Z} -semigroups,
and we discuss examples for which the containment is proper.
We then obtain various conditions on X which ensure that the \mathscr{E} -groups and the \mathscr{Z} -semigroups are equal.
When X is a group-like space, we derive lower bounds for the order of these groups and their localizations.
In the last section we make specific calculations for the \mathscr{E} -groups and \mathscr{Z} -groups
of certain low dimensional Lie groups. |
doi_str_mv | 10.2969/jmsj/1149166782 |
format | Article |
fullrecord | <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jmsj_1149166782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2969_jmsj_1149166782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-469c8b529cff7b01dc1cac7c5aa3ef5e2db422468e60b659bb1a5bd3b80dceec3</originalsourceid><addsrcrecordid>eNplkLFOwzAURS0EEqUws-YHQm0nduyxqoAWVWKhc2Q_2yRRUkd-7dC_p6UFBqYrPd1zn3QIeWT0iWupZ92A3YyxUjMpK8WvyIQpxXJeFMU1mVDKRS5kKW7JHWJHaSk11xPytoxD3MXxkEFvED1mMWTo-5APZsTMbF3Wbt0evMuaY3OIaWxaHL5rzQ_6meJ-xHtyE0yP_uGSU7J5ef5YLPP1--tqMV_nUCq1y4-PQVnBNYRQWcocMDBQgTCm8EF47mzJeSmVl9RKoa1lRlhXWEUdeA_FlMzPu2OKnYed30PfunpM7WDSoY6mrReb9eV6iZOc-k_OcWN23oAUEZMPvzij9UnnP-ILTnZsyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Homotopy classes of self-maps and induced homomorphisms of homotopy groups</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>ARKOWITZ, Martin ; STROM, Jeffrey ; ŌSHIMA, Hideaki</creator><creatorcontrib>ARKOWITZ, Martin ; STROM, Jeffrey ; ŌSHIMA, Hideaki</creatorcontrib><description>For a based space X , we consider the group \mathscr{E}_{\# n}(X) of all self homotopy classes \alpha of X
such that \alpha_{\#} = \mathrm{id}:\pi_i(X) \to \pi_i(X) , for all i\le n , where n \le \infty ,
and the group \mathscr{E}_{\Omega}(X) of all \alpha such that \Omega \alpha = \mathrm{id} .
Analogously, we study the semigroups \mathscr{Z}_{\# n}(X) and \mathscr{Z}_{\varOmega}(X) defined by replacing ' \mathrm{id} ' by ' 0 ' above.
There is a chain of containments of the \mathscr{E} -groups and the \mathscr{Z} -semigroups,
and we discuss examples for which the containment is proper.
We then obtain various conditions on X which ensure that the \mathscr{E} -groups and the \mathscr{Z} -semigroups are equal.
When X is a group-like space, we derive lower bounds for the order of these groups and their localizations.
In the last section we make specific calculations for the \mathscr{E} -groups and \mathscr{Z} -groups
of certain low dimensional Lie groups.</description><identifier>ISSN: 0025-5645</identifier><identifier>EISSN: 1881-2333</identifier><identifier>DOI: 10.2969/jmsj/1149166782</identifier><language>eng</language><publisher>Mathematical Society of Japan</publisher><subject>55P10 ; 55P45 ; 55P60 ; 55Q05 ; group-like spaces ; homotopy equivalences ; homotopy groups ; Lie groups</subject><ispartof>Journal of the Mathematical Society of Japan, 2006-04, Vol.58 (2), p.401-418</ispartof><rights>Copyright 2006 Mathematical Society of Japan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-469c8b529cff7b01dc1cac7c5aa3ef5e2db422468e60b659bb1a5bd3b80dceec3</citedby><cites>FETCH-LOGICAL-c488t-469c8b529cff7b01dc1cac7c5aa3ef5e2db422468e60b659bb1a5bd3b80dceec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>ARKOWITZ, Martin</creatorcontrib><creatorcontrib>STROM, Jeffrey</creatorcontrib><creatorcontrib>ŌSHIMA, Hideaki</creatorcontrib><title>Homotopy classes of self-maps and induced homomorphisms of homotopy groups</title><title>Journal of the Mathematical Society of Japan</title><description>For a based space X , we consider the group \mathscr{E}_{\# n}(X) of all self homotopy classes \alpha of X
such that \alpha_{\#} = \mathrm{id}:\pi_i(X) \to \pi_i(X) , for all i\le n , where n \le \infty ,
and the group \mathscr{E}_{\Omega}(X) of all \alpha such that \Omega \alpha = \mathrm{id} .
Analogously, we study the semigroups \mathscr{Z}_{\# n}(X) and \mathscr{Z}_{\varOmega}(X) defined by replacing ' \mathrm{id} ' by ' 0 ' above.
There is a chain of containments of the \mathscr{E} -groups and the \mathscr{Z} -semigroups,
and we discuss examples for which the containment is proper.
We then obtain various conditions on X which ensure that the \mathscr{E} -groups and the \mathscr{Z} -semigroups are equal.
When X is a group-like space, we derive lower bounds for the order of these groups and their localizations.
In the last section we make specific calculations for the \mathscr{E} -groups and \mathscr{Z} -groups
of certain low dimensional Lie groups.</description><subject>55P10</subject><subject>55P45</subject><subject>55P60</subject><subject>55Q05</subject><subject>group-like spaces</subject><subject>homotopy equivalences</subject><subject>homotopy groups</subject><subject>Lie groups</subject><issn>0025-5645</issn><issn>1881-2333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNplkLFOwzAURS0EEqUws-YHQm0nduyxqoAWVWKhc2Q_2yRRUkd-7dC_p6UFBqYrPd1zn3QIeWT0iWupZ92A3YyxUjMpK8WvyIQpxXJeFMU1mVDKRS5kKW7JHWJHaSk11xPytoxD3MXxkEFvED1mMWTo-5APZsTMbF3Wbt0evMuaY3OIaWxaHL5rzQ_6meJ-xHtyE0yP_uGSU7J5ef5YLPP1--tqMV_nUCq1y4-PQVnBNYRQWcocMDBQgTCm8EF47mzJeSmVl9RKoa1lRlhXWEUdeA_FlMzPu2OKnYed30PfunpM7WDSoY6mrReb9eV6iZOc-k_OcWN23oAUEZMPvzij9UnnP-ILTnZsyQ</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>ARKOWITZ, Martin</creator><creator>STROM, Jeffrey</creator><creator>ŌSHIMA, Hideaki</creator><general>Mathematical Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060401</creationdate><title>Homotopy classes of self-maps and induced homomorphisms of homotopy groups</title><author>ARKOWITZ, Martin ; STROM, Jeffrey ; ŌSHIMA, Hideaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-469c8b529cff7b01dc1cac7c5aa3ef5e2db422468e60b659bb1a5bd3b80dceec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>55P10</topic><topic>55P45</topic><topic>55P60</topic><topic>55Q05</topic><topic>group-like spaces</topic><topic>homotopy equivalences</topic><topic>homotopy groups</topic><topic>Lie groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ARKOWITZ, Martin</creatorcontrib><creatorcontrib>STROM, Jeffrey</creatorcontrib><creatorcontrib>ŌSHIMA, Hideaki</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Mathematical Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ARKOWITZ, Martin</au><au>STROM, Jeffrey</au><au>ŌSHIMA, Hideaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homotopy classes of self-maps and induced homomorphisms of homotopy groups</atitle><jtitle>Journal of the Mathematical Society of Japan</jtitle><date>2006-04-01</date><risdate>2006</risdate><volume>58</volume><issue>2</issue><spage>401</spage><epage>418</epage><pages>401-418</pages><issn>0025-5645</issn><eissn>1881-2333</eissn><abstract>For a based space X , we consider the group \mathscr{E}_{\# n}(X) of all self homotopy classes \alpha of X
such that \alpha_{\#} = \mathrm{id}:\pi_i(X) \to \pi_i(X) , for all i\le n , where n \le \infty ,
and the group \mathscr{E}_{\Omega}(X) of all \alpha such that \Omega \alpha = \mathrm{id} .
Analogously, we study the semigroups \mathscr{Z}_{\# n}(X) and \mathscr{Z}_{\varOmega}(X) defined by replacing ' \mathrm{id} ' by ' 0 ' above.
There is a chain of containments of the \mathscr{E} -groups and the \mathscr{Z} -semigroups,
and we discuss examples for which the containment is proper.
We then obtain various conditions on X which ensure that the \mathscr{E} -groups and the \mathscr{Z} -semigroups are equal.
When X is a group-like space, we derive lower bounds for the order of these groups and their localizations.
In the last section we make specific calculations for the \mathscr{E} -groups and \mathscr{Z} -groups
of certain low dimensional Lie groups.</abstract><pub>Mathematical Society of Japan</pub><doi>10.2969/jmsj/1149166782</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5645 |
ispartof | Journal of the Mathematical Society of Japan, 2006-04, Vol.58 (2), p.401-418 |
issn | 0025-5645 1881-2333 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_jmsj_1149166782 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | 55P10 55P45 55P60 55Q05 group-like spaces homotopy equivalences homotopy groups Lie groups |
title | Homotopy classes of self-maps and induced homomorphisms of homotopy groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homotopy%20classes%20of%20self-maps%20and%20induced%20homomorphisms%20of%20homotopy%20groups&rft.jtitle=Journal%20of%20the%20Mathematical%20Society%20of%20Japan&rft.au=ARKOWITZ,%20Martin&rft.date=2006-04-01&rft.volume=58&rft.issue=2&rft.spage=401&rft.epage=418&rft.pages=401-418&rft.issn=0025-5645&rft.eissn=1881-2333&rft_id=info:doi/10.2969/jmsj/1149166782&rft_dat=%3Ccrossref_proje%3E10_2969_jmsj_1149166782%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |