Homotopy classes of self-maps and induced homomorphisms of homotopy groups
For a based space X , we consider the group \mathscr{E}_{\# n}(X) of all self homotopy classes \alpha of X such that \alpha_{\#} = \mathrm{id}:\pi_i(X) \to \pi_i(X) , for all i\le n , where n \le \infty , and the group \mathscr{E}_{\Omega}(X) of all \alpha such that \Omega \alpha = \mathrm{id} . Ana...
Gespeichert in:
Veröffentlicht in: | Journal of the Mathematical Society of Japan 2006-04, Vol.58 (2), p.401-418 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a based space X , we consider the group \mathscr{E}_{\# n}(X) of all self homotopy classes \alpha of X
such that \alpha_{\#} = \mathrm{id}:\pi_i(X) \to \pi_i(X) , for all i\le n , where n \le \infty ,
and the group \mathscr{E}_{\Omega}(X) of all \alpha such that \Omega \alpha = \mathrm{id} .
Analogously, we study the semigroups \mathscr{Z}_{\# n}(X) and \mathscr{Z}_{\varOmega}(X) defined by replacing ' \mathrm{id} ' by ' 0 ' above.
There is a chain of containments of the \mathscr{E} -groups and the \mathscr{Z} -semigroups,
and we discuss examples for which the containment is proper.
We then obtain various conditions on X which ensure that the \mathscr{E} -groups and the \mathscr{Z} -semigroups are equal.
When X is a group-like space, we derive lower bounds for the order of these groups and their localizations.
In the last section we make specific calculations for the \mathscr{E} -groups and \mathscr{Z} -groups
of certain low dimensional Lie groups. |
---|---|
ISSN: | 0025-5645 1881-2333 |
DOI: | 10.2969/jmsj/1149166782 |