On the first homology of the group of equivariant Lipschitz homeomorphisms

We study the structure of the group of equivariant Lipschitz homeomorphisms of a smooth G -manifold M which are isotopic to the identity through equivariant Lipschitz homeomorphisms with compact support. First we show that the group is perfect when M is a smooth free G -manifold. Secondly in the cas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Mathematical Society of Japan 2006-01, Vol.58 (1), p.1-15
Hauptverfasser: ABE, Kōjun, FUKUI, Kazuhiko, MIURA, Takeshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the structure of the group of equivariant Lipschitz homeomorphisms of a smooth G -manifold M which are isotopic to the identity through equivariant Lipschitz homeomorphisms with compact support. First we show that the group is perfect when M is a smooth free G -manifold. Secondly in the case of \mathbf{C}^n with the canonical U(n) -action, we show that the first homology group admits continuous moduli. Thirdly we apply the result to the case of the group L(\mathbf{C},0) of Lipschitz homeomorphisms of \mathbf{C}^n fixing the origin.
ISSN:0025-5645
1881-2333
DOI:10.2969/jmsj/1145287091