On the first homology of the group of equivariant Lipschitz homeomorphisms
We study the structure of the group of equivariant Lipschitz homeomorphisms of a smooth G -manifold M which are isotopic to the identity through equivariant Lipschitz homeomorphisms with compact support. First we show that the group is perfect when M is a smooth free G -manifold. Secondly in the cas...
Gespeichert in:
Veröffentlicht in: | Journal of the Mathematical Society of Japan 2006-01, Vol.58 (1), p.1-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the structure of the group of equivariant Lipschitz
homeomorphisms of a smooth G -manifold M which are isotopic
to the identity through equivariant Lipschitz homeomorphisms
with compact support. First we show that the group is perfect
when M is a smooth free G -manifold. Secondly in the case of
\mathbf{C}^n with the canonical U(n) -action, we show that the first homology group admits continuous moduli. Thirdly we apply the result to the case of the group L(\mathbf{C},0) of Lipschitz homeomorphisms of \mathbf{C}^n fixing the origin. |
---|---|
ISSN: | 0025-5645 1881-2333 |
DOI: | 10.2969/jmsj/1145287091 |