ANALYSIS OF DIRECT BOUNDARY-DOMAIN INTEGRAL EQUATIONS FOR A MIXED BVP WITH VARIABLE COEFFICIENT, I: EQUIVALENCE AND INVERTIBILITY

A mixed (Dirichlet-Neumann) boundary value problem (BVP) for the "stationary heat transfer" partial differential equation with variable coefficient is reduced to some systems of nonstandard segregated direct parametrix-based boundary-domain integral equations (BDIEs). The BDIE systems cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of integral equations and applications 2009-12, Vol.21 (4), p.499-543
Hauptverfasser: CHKADUA, O., MIKHAILOV, S.E., NATROSHVILI, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 543
container_issue 4
container_start_page 499
container_title The Journal of integral equations and applications
container_volume 21
creator CHKADUA, O.
MIKHAILOV, S.E.
NATROSHVILI, D.
description A mixed (Dirichlet-Neumann) boundary value problem (BVP) for the "stationary heat transfer" partial differential equation with variable coefficient is reduced to some systems of nonstandard segregated direct parametrix-based boundary-domain integral equations (BDIEs). The BDIE systems contain integral operators defined on the domain under consideration as well as potential-type and pseudodifferential operators defined on open submanifolds of the boundary. It is shown that the BDIE systems are equivalent to the original mixed BVP, and the operators of the BDIE systems are invertible in appropriate Sobolev spaces.
doi_str_mv 10.1216/JIE-2009-21-4-499
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jiea_1262271458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26163662</jstor_id><sourcerecordid>26163662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-2a6746ea97eb394895428eacf50ad7d5f1d28d7931aa5a4d290771b0659ab29a3</originalsourceid><addsrcrecordid>eNo9kUFPgzAYhhujiXP6AzyY9AdYbQsU6q2Dsn2GgTI23anpgCVbNCwwDx7957Js2elLvuR5Du-D0D2jT4wz8fwKmnBKJeGMuMSV8gINmHQCwgUXl2hAA-kTRwp-jW66bkspcz0pBuhPpSpZzmCGsxhHkOuwwKNsnkYqX5IomypIMaSFHucqwfp9rgrI0hmOsxwrPIVPHeHR4g1_QDHBC5WDGiUah5mOYwhBp8UjhpcDBwuV6DTUWKVRL1zovIARJFAsb9HV2n519d3pDtE81kU4IUk2hlAlpHREsCfcCt8VtZV-vXKkG0jP5UFty7VHbeVX3ppVPKh86TBrPetWXFLfZysqPGlXXFpniNTRu2ubbV3u65_ya1OZXbv5tu2vaezGhPPk9D2d7aa2hvUTcr_fK-gd7Ogo26br2np9xhk1hw6m72AOHQxnxjV9h555ODLbbt-0Z4ALJhwhuPMP0pV7Fw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ANALYSIS OF DIRECT BOUNDARY-DOMAIN INTEGRAL EQUATIONS FOR A MIXED BVP WITH VARIABLE COEFFICIENT, I: EQUIVALENCE AND INVERTIBILITY</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>CHKADUA, O. ; MIKHAILOV, S.E. ; NATROSHVILI, D.</creator><creatorcontrib>CHKADUA, O. ; MIKHAILOV, S.E. ; NATROSHVILI, D.</creatorcontrib><description>A mixed (Dirichlet-Neumann) boundary value problem (BVP) for the "stationary heat transfer" partial differential equation with variable coefficient is reduced to some systems of nonstandard segregated direct parametrix-based boundary-domain integral equations (BDIEs). The BDIE systems contain integral operators defined on the domain under consideration as well as potential-type and pseudodifferential operators defined on open submanifolds of the boundary. It is shown that the BDIE systems are equivalent to the original mixed BVP, and the operators of the BDIE systems are invertible in appropriate Sobolev spaces.</description><identifier>ISSN: 0897-3962</identifier><identifier>EISSN: 1938-2626</identifier><identifier>DOI: 10.1216/JIE-2009-21-4-499</identifier><language>eng</language><publisher>The Rocky Mountain Mathematics Consortium</publisher><subject>Boundary value problems ; boundary-domain integral equations ; Cardiac resynchronization therapy ; Differential equations ; existence ; Invertibility ; Mathematical functions ; Mathematical integrals ; Mathematics ; mixed problem ; parametrix ; Partial differential equation ; Partial differential equations ; pseudo-differential equations ; Uniqueness ; Variable coefficients</subject><ispartof>The Journal of integral equations and applications, 2009-12, Vol.21 (4), p.499-543</ispartof><rights>Copyright ©2009 Rocky Mountain Mathematics Consortium</rights><rights>Copyright 2009 Rocky Mountain Mathematics Consortium</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-2a6746ea97eb394895428eacf50ad7d5f1d28d7931aa5a4d290771b0659ab29a3</citedby><cites>FETCH-LOGICAL-c368t-2a6746ea97eb394895428eacf50ad7d5f1d28d7931aa5a4d290771b0659ab29a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26163662$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26163662$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229,79752,79760</link.rule.ids></links><search><creatorcontrib>CHKADUA, O.</creatorcontrib><creatorcontrib>MIKHAILOV, S.E.</creatorcontrib><creatorcontrib>NATROSHVILI, D.</creatorcontrib><title>ANALYSIS OF DIRECT BOUNDARY-DOMAIN INTEGRAL EQUATIONS FOR A MIXED BVP WITH VARIABLE COEFFICIENT, I: EQUIVALENCE AND INVERTIBILITY</title><title>The Journal of integral equations and applications</title><description>A mixed (Dirichlet-Neumann) boundary value problem (BVP) for the "stationary heat transfer" partial differential equation with variable coefficient is reduced to some systems of nonstandard segregated direct parametrix-based boundary-domain integral equations (BDIEs). The BDIE systems contain integral operators defined on the domain under consideration as well as potential-type and pseudodifferential operators defined on open submanifolds of the boundary. It is shown that the BDIE systems are equivalent to the original mixed BVP, and the operators of the BDIE systems are invertible in appropriate Sobolev spaces.</description><subject>Boundary value problems</subject><subject>boundary-domain integral equations</subject><subject>Cardiac resynchronization therapy</subject><subject>Differential equations</subject><subject>existence</subject><subject>Invertibility</subject><subject>Mathematical functions</subject><subject>Mathematical integrals</subject><subject>Mathematics</subject><subject>mixed problem</subject><subject>parametrix</subject><subject>Partial differential equation</subject><subject>Partial differential equations</subject><subject>pseudo-differential equations</subject><subject>Uniqueness</subject><subject>Variable coefficients</subject><issn>0897-3962</issn><issn>1938-2626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kUFPgzAYhhujiXP6AzyY9AdYbQsU6q2Dsn2GgTI23anpgCVbNCwwDx7957Js2elLvuR5Du-D0D2jT4wz8fwKmnBKJeGMuMSV8gINmHQCwgUXl2hAA-kTRwp-jW66bkspcz0pBuhPpSpZzmCGsxhHkOuwwKNsnkYqX5IomypIMaSFHucqwfp9rgrI0hmOsxwrPIVPHeHR4g1_QDHBC5WDGiUah5mOYwhBp8UjhpcDBwuV6DTUWKVRL1zovIARJFAsb9HV2n519d3pDtE81kU4IUk2hlAlpHREsCfcCt8VtZV-vXKkG0jP5UFty7VHbeVX3ppVPKh86TBrPetWXFLfZysqPGlXXFpniNTRu2ubbV3u65_ya1OZXbv5tu2vaezGhPPk9D2d7aa2hvUTcr_fK-gd7Ogo26br2np9xhk1hw6m72AOHQxnxjV9h555ODLbbt-0Z4ALJhwhuPMP0pV7Fw</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>CHKADUA, O.</creator><creator>MIKHAILOV, S.E.</creator><creator>NATROSHVILI, D.</creator><general>The Rocky Mountain Mathematics Consortium</general><general>Rocky Mountain Mathematics Consortium</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091201</creationdate><title>ANALYSIS OF DIRECT BOUNDARY-DOMAIN INTEGRAL EQUATIONS FOR A MIXED BVP WITH VARIABLE COEFFICIENT, I: EQUIVALENCE AND INVERTIBILITY</title><author>CHKADUA, O. ; MIKHAILOV, S.E. ; NATROSHVILI, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-2a6746ea97eb394895428eacf50ad7d5f1d28d7931aa5a4d290771b0659ab29a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Boundary value problems</topic><topic>boundary-domain integral equations</topic><topic>Cardiac resynchronization therapy</topic><topic>Differential equations</topic><topic>existence</topic><topic>Invertibility</topic><topic>Mathematical functions</topic><topic>Mathematical integrals</topic><topic>Mathematics</topic><topic>mixed problem</topic><topic>parametrix</topic><topic>Partial differential equation</topic><topic>Partial differential equations</topic><topic>pseudo-differential equations</topic><topic>Uniqueness</topic><topic>Variable coefficients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHKADUA, O.</creatorcontrib><creatorcontrib>MIKHAILOV, S.E.</creatorcontrib><creatorcontrib>NATROSHVILI, D.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of integral equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHKADUA, O.</au><au>MIKHAILOV, S.E.</au><au>NATROSHVILI, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ANALYSIS OF DIRECT BOUNDARY-DOMAIN INTEGRAL EQUATIONS FOR A MIXED BVP WITH VARIABLE COEFFICIENT, I: EQUIVALENCE AND INVERTIBILITY</atitle><jtitle>The Journal of integral equations and applications</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>21</volume><issue>4</issue><spage>499</spage><epage>543</epage><pages>499-543</pages><issn>0897-3962</issn><eissn>1938-2626</eissn><abstract>A mixed (Dirichlet-Neumann) boundary value problem (BVP) for the "stationary heat transfer" partial differential equation with variable coefficient is reduced to some systems of nonstandard segregated direct parametrix-based boundary-domain integral equations (BDIEs). The BDIE systems contain integral operators defined on the domain under consideration as well as potential-type and pseudodifferential operators defined on open submanifolds of the boundary. It is shown that the BDIE systems are equivalent to the original mixed BVP, and the operators of the BDIE systems are invertible in appropriate Sobolev spaces.</abstract><pub>The Rocky Mountain Mathematics Consortium</pub><doi>10.1216/JIE-2009-21-4-499</doi><tpages>45</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-3962
ispartof The Journal of integral equations and applications, 2009-12, Vol.21 (4), p.499-543
issn 0897-3962
1938-2626
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jiea_1262271458
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects Boundary value problems
boundary-domain integral equations
Cardiac resynchronization therapy
Differential equations
existence
Invertibility
Mathematical functions
Mathematical integrals
Mathematics
mixed problem
parametrix
Partial differential equation
Partial differential equations
pseudo-differential equations
Uniqueness
Variable coefficients
title ANALYSIS OF DIRECT BOUNDARY-DOMAIN INTEGRAL EQUATIONS FOR A MIXED BVP WITH VARIABLE COEFFICIENT, I: EQUIVALENCE AND INVERTIBILITY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ANALYSIS%20OF%20DIRECT%20BOUNDARY-DOMAIN%20INTEGRAL%20EQUATIONS%20FOR%20A%20MIXED%20BVP%20WITH%20VARIABLE%20COEFFICIENT,%20I:%20EQUIVALENCE%20AND%20INVERTIBILITY&rft.jtitle=The%20Journal%20of%20integral%20equations%20and%20applications&rft.au=CHKADUA,%20O.&rft.date=2009-12-01&rft.volume=21&rft.issue=4&rft.spage=499&rft.epage=543&rft.pages=499-543&rft.issn=0897-3962&rft.eissn=1938-2626&rft_id=info:doi/10.1216/JIE-2009-21-4-499&rft_dat=%3Cjstor_proje%3E26163662%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26163662&rfr_iscdi=true