ANALYSIS OF DIRECT BOUNDARY-DOMAIN INTEGRAL EQUATIONS FOR A MIXED BVP WITH VARIABLE COEFFICIENT, I: EQUIVALENCE AND INVERTIBILITY

A mixed (Dirichlet-Neumann) boundary value problem (BVP) for the "stationary heat transfer" partial differential equation with variable coefficient is reduced to some systems of nonstandard segregated direct parametrix-based boundary-domain integral equations (BDIEs). The BDIE systems cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of integral equations and applications 2009-12, Vol.21 (4), p.499-543
Hauptverfasser: CHKADUA, O., MIKHAILOV, S.E., NATROSHVILI, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A mixed (Dirichlet-Neumann) boundary value problem (BVP) for the "stationary heat transfer" partial differential equation with variable coefficient is reduced to some systems of nonstandard segregated direct parametrix-based boundary-domain integral equations (BDIEs). The BDIE systems contain integral operators defined on the domain under consideration as well as potential-type and pseudodifferential operators defined on open submanifolds of the boundary. It is shown that the BDIE systems are equivalent to the original mixed BVP, and the operators of the BDIE systems are invertible in appropriate Sobolev spaces.
ISSN:0897-3962
1938-2626
DOI:10.1216/JIE-2009-21-4-499