PSEUDOSPECTRA OF WIENER-HOPF INTEGRAL OPERATORS AND CONSTANT-COEFFICIENT DIFFERENTIAL OPERATORS

A number z ∈ C is in the ε-pseudospectrum of a linear operator A if ∥(zI − A)−1∥ ≥ ε−1. In this paper, we investigate the ε-pseudospectra of Volterra Wiener-Hopf integral operators and constant-coefficient differential operators with boundary conditions at one endpoint for the interval [0, b]. We sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of integral equations and applications 1993, Vol.5 (3), p.369-403
1. Verfasser: REDDY, SATISH C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A number z ∈ C is in the ε-pseudospectrum of a linear operator A if ∥(zI − A)−1∥ ≥ ε−1. In this paper, we investigate the ε-pseudospectra of Volterra Wiener-Hopf integral operators and constant-coefficient differential operators with boundary conditions at one endpoint for the interval [0, b]. We show that although the spectra of these operators are not continuous in the limit b → ∞, the ε-pseudospectra are continuous as b → ∞ for all ε > 0. These results are an extension of previous work on the pseudospectra of Toeplitz matrices.
ISSN:0897-3962
1938-2626
DOI:10.1216/jiea/1181075761