Topologically slice knots of smooth concordance order two

The existence of topologically slice knots that are of infinite order in the knot concordance group followed from Freedman’s work on topological surgery and Donaldson’s gauge theoretic approach to four-manifolds. Here, as an application of Ozsváth and Szabó’s Heegaard Floer theory, we show the exist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of differential geometry 2016-03, Vol.102 (3), p.353-393
Hauptverfasser: Hedden, Matthew, Kim, Se-Goo, Livingston, Charles
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The existence of topologically slice knots that are of infinite order in the knot concordance group followed from Freedman’s work on topological surgery and Donaldson’s gauge theoretic approach to four-manifolds. Here, as an application of Ozsváth and Szabó’s Heegaard Floer theory, we show the existence of an infinite subgroup of the smooth concordance group generated by topologically slice knots of concordance order two. In addition, no nontrivial element in this subgroup can be represented by a knot with Alexander polynomial one.
ISSN:0022-040X
1945-743X
DOI:10.4310/jdg/1456754013