Topologically slice knots of smooth concordance order two
The existence of topologically slice knots that are of infinite order in the knot concordance group followed from Freedman’s work on topological surgery and Donaldson’s gauge theoretic approach to four-manifolds. Here, as an application of Ozsváth and Szabó’s Heegaard Floer theory, we show the exist...
Gespeichert in:
Veröffentlicht in: | Journal of differential geometry 2016-03, Vol.102 (3), p.353-393 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The existence of topologically slice knots that are of infinite order in the knot
concordance group followed from Freedman’s work on topological surgery and
Donaldson’s gauge theoretic approach to four-manifolds. Here, as an application
of Ozsváth and Szabó’s Heegaard Floer theory, we show the existence of an
infinite subgroup of the smooth concordance group generated by topologically
slice knots of concordance order two. In addition, no nontrivial element in this
subgroup can be represented by a knot with Alexander polynomial one. |
---|---|
ISSN: | 0022-040X 1945-743X |
DOI: | 10.4310/jdg/1456754013 |