The round sphere minimizes entropy among closed self-shrinkers

The entropy of a hypersurface is a geometric invariant that measures complexity and is invariant under rigid motions and dilations. It is given by the supremum over all Gaussian integrals with varying centers and scales. It is monotone under mean curvature flow, thus giving a Lyapunov functional. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of differential geometry 2013-08, Vol.95 (1), p.53-69
Hauptverfasser: Colding, Tobias Holck, Ilmanen, Tom, Minicozzi, William P., White, Brian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The entropy of a hypersurface is a geometric invariant that measures complexity and is invariant under rigid motions and dilations. It is given by the supremum over all Gaussian integrals with varying centers and scales. It is monotone under mean curvature flow, thus giving a Lyapunov functional. Therefore, the entropy of the initial hypersurface bounds the entropy at all future singularities. We show here that not only does the round sphere have the lowest entropy of any closed singularity, but there is a gap to the second lowest.
ISSN:0022-040X
1945-743X
DOI:10.4310/jdg/1375124609