Metrisability of two-dimensional projective structures
We carry out the programme of R. Liouville, Sur les invariants de certaines équations différentielles et sur leurs applications, to construct an explicit local obstruction to the existence of a Levi–Civita connection within a given projective structure \Gamma on a surface. The obstruction is of orde...
Gespeichert in:
Veröffentlicht in: | Journal of differential geometry 2009-11, Vol.83 (3), p.465-500 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We carry out the programme of R. Liouville, Sur les invariants de certaines équations
différentielles et sur leurs applications, to construct
an explicit local obstruction to the existence of a Levi–Civita connection
within a given projective structure \Gamma on a surface. The
obstruction is of order 5 in the components of a connection in a
projective class. It can be expressed as a point invariant for a
second order ODE whose integral curves are the geodesics of \Gamma
or as a weighted scalar projective invariant of the projective class.
If the obstruction vanishes we find the sufficient conditions for the
existence of a metric in the real analytic case. In the generic case
they are expressed by the vanishing of two invariants of order 6 in
the connection. In degenerate cases the sufficient obstruction is of
order at most 8. |
---|---|
ISSN: | 0022-040X 1945-743X |
DOI: | 10.4310/jdg/1264601033 |