The local isometric embedding in $\mathbb{R}^3$ of two-dimensional Riemannian manifolds with Gaussian curvature changing sign to finite order on a curve

We consider two natural problems arising in geometry which are equivalent to the local solvability of specific equations of Monge-Ampère type. These two problems are: the local isometric embedding problem for two-dimensional Riemannian manifolds, and the problem of locally prescribed Gaussian curvat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of differential geometry 2007-06, Vol.76 (2), p.249-291
1. Verfasser: Khuri, Marcus A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider two natural problems arising in geometry which are equivalent to the local solvability of specific equations of Monge-Ampère type. These two problems are: the local isometric embedding problem for two-dimensional Riemannian manifolds, and the problem of locally prescribed Gaussian curvature for surfaces in \mathbb{R}^3. We prove a general local existence result for a large class of Monge-Ampère equations in the plane, and obtain as corollaries the existence of regular solutions to both problems, in the case that the Gaussian curvature vanishes to arbitrary finite order on a single smooth curve.
ISSN:0022-040X
1945-743X
DOI:10.4310/jdg/1180135679