L'invariant η Pour Les Variétés Lipschitziennes
The η-invariant has been defined for C∞-manifolds by M.F. Atiyah, V.K. Patodi and I.M. Singer, and more recently for manifolds with corners by A. Hassell, R. Mazzeo and R.B. Melrose, and for stratified PL manifolds by H. Moscovici and F.B. Wu. In the present work, this invariant is generalized in th...
Gespeichert in:
Veröffentlicht in: | Journal of differential geometry 2000, Vol.55 (1), p.1-41 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The η-invariant has been defined for C∞-manifolds by M.F.
Atiyah, V.K. Patodi and I.M. Singer, and more recently for manifolds with corners by A.
Hassell, R. Mazzeo and R.B. Melrose, and for stratified PL manifolds by H. Moscovici and
F.B. Wu. In the present work, this invariant is generalized in the framework of lipschitz
riemannian manifolds. This involves selfadjoint extensions of the signature operator on a
lipschitz manifold with boundary, and measurable differential forms which represent the
Pontryagyn classes of the manifold. This allows us to extend from smooth to topological
manifolds the Atiyah-Patodi-Singer index theorem for flat bundles. |
---|---|
ISSN: | 0022-040X 1945-743X |
DOI: | 10.4310/jdg/1090340565 |