The limiting failure rate for a convolution of life distributions

In this paper we investigate the limiting behavior of the failure rate for the convolution of two or more life distributions. In a previous paper on mixtures, Block, Mi and Savits (1993) showed that the failure rate behaves like the limiting behavior of the strongest component. We show a similar res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2015-09, Vol.52 (3), p.894-898
Hauptverfasser: Block, Henry W., Langberg, Naftali A., Savits, Thomas H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we investigate the limiting behavior of the failure rate for the convolution of two or more life distributions. In a previous paper on mixtures, Block, Mi and Savits (1993) showed that the failure rate behaves like the limiting behavior of the strongest component. We show a similar result here for convolutions. We also show by example that unlike a mixture population, the ultimate direction of monotonicity does not necessarily follow that of the strongest component.
ISSN:0021-9002
1475-6072
DOI:10.1239/jap/1445543854