Asymptotic Properties of a Random Graph with Duplications

We deal with a random graph model evolving in discrete time steps by duplicating and deleting the edges of randomly chosen vertices. We prove the existence of an almost surely asymptotic degree distribution, with stretched exponential decay; more precisely, the proportion of vertices of degree d ten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2015-06, Vol.52 (2), p.375-390
Hauptverfasser: Backhausz, Agnes, Mori, Tamas F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We deal with a random graph model evolving in discrete time steps by duplicating and deleting the edges of randomly chosen vertices. We prove the existence of an almost surely asymptotic degree distribution, with stretched exponential decay; more precisely, the proportion of vertices of degree d tends to some positive number c d > 0 almost surely as the number of steps goes to ∞, and c d ~ (eπ)1/2 d 1/4e-2√d holds as d → ∞.
ISSN:0021-9002
1475-6072
DOI:10.1239/jap/1437658604